Math, asked by ravindra41, 1 month ago

Sides of a triangle are in the ratio 3:4 : 5 and its area is 54 cm². Find the sides of the triangle.​

Answers

Answered by mohammadmohibjamal
4

Answer:

Length of the sides are 9 cm, 12 cm and 15 cm.

Step-by-step explanation:

Let the sides be 3x, 4x and 5x.

By Pythagoras Theorem,

(5x) {}^{2}  =  {(3x)}^{2}  +  {(4x)}^{2}

25 {x}^{2}  = 9 {x}^{2}  + 16 {x}^{2}

25 {x}^{2}  = 25 {x}^{2}

LHS = RHS

Hence, the sides satisfy the Pythagoras Theorem.

Hence, the angle between the sides 3x and 4x is a right angle.

Taking 4x as the base, the height will be 3x.

area  =  \frac{1}{2} bh =  \frac{1}{2}  \times 3x \times 4x

area = 6 {x}^{2}

It is given that the area is 54 cm². So,

6 {x}^{2}  = 54 {cm}^{2}

 {x}^{2}  = 9 {cm}^{2}

(x) {}^{2}  =  {(3cm)}^{2}

x=3cm

Length of the first side = 3x = 9cm

Length of the second side = 4x = 12cm

Length of the third side = 5x = 15cm

Answered by ChikkukiAshee
4

Answer:

 \large \bf{ \underbrace{  \red{ ✪ { \green { \: Given : }}}}}

Ratio of sides of triangle

3 : 4 : 5

&

Area of the given triangle = 54 cm²

 \large \bf{ \underbrace{  \green{ ✪ { \red{To \: find: }}}}}

Sides of the triangle

 \large \bf{ \underbrace{  \pink{ ✪ { \color{blue}{Formula \: used : }}}}}

Heron's Formula

  \large{\boxed{ \bf{{Area \:   =  \sqrt{s(s - a)(s - b)(s - c)} }}}}

Where,

S is the semi perimeter of the triangle.

 \large{ \boxed{ \bf{s =  \frac{a + b + c}{2} }}}

 \large \bf{ \underbrace{  \color{blue}{ ✪ { \pink{ \: Solⁿ :}}}}}

Let the sides of the triangle be 3x, 4x and 5x

(∵ The sides are in the ratio 3 : 4 : 5)

Perimeter of the triangle

 \large \bf = 3x + 4x + 5x

 \large \bf = 12x

∴ Semi perimeter (s) of the triangle

 \large \bf =  \frac{12x}{2}

 \large \bf =  6x

Area of the triangle

 \large \bf  \sqrt{6x(6x - 3x)(6x - 4x)(6x - 5x)}  = 54  \: cm^{2}

 \large \bf  \sqrt{6x \times 3x \times 2x \times x}  = 54  \: cm^{2}

 \large \bf  \sqrt{36x {}^{4} }= 54  \: cm^{2}

 \large \bf  \sqrt{(6x {}^{2}) {}^{2}  }= 54  \: cm^{2}

 \large \bf  6x {}^{2}= 54  \: cm^{2}

 \large \bf  x {}^{2}=  \frac{54 \: cm {}^{2} }{6}

 \large \bf  x {}^{2}=  9 \: cm {}^{2}

 \large \bf  ∴x = 3 \: cm

Now,

 \large \bf  3x = 9 \: cm

 \large \bf  4x = 12\: cm

 \large \bf  5x = 15\: cm

Hence, the sides of the given triangle are 9 cm, 12 cm and 15 cm.

 \large \bf {\red{Glad  \: to \:  help \:  you...}}

 \huge{ \underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

Attachments:
Similar questions