Math, asked by nayab11234, 1 year ago

sides of a triangle are in the ratio of 12 :17:25 and it's perimeter is 540cm find it's area​

Answers

Answered by arpitaverma12
2

Step-by-step explanation:

ratio 12:17:25

let ratio be multiple of x

12x:17x:25x

perimeter 540 cm

12x+17x+25x=540

54x=540

x=540\54

x=10

12^10=120

17^10=170

25^10=250

s=a+b+c\2

120+170+540\2

540\2

270

now u can solve it using herons formula

mark me as brainlist

and

follow me

Answered by Anonymous
8

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Assumption

Sides be 12p , 17p and 25p

\textbf{\underline{Hence}}

12p + 17p + 25p = 540

29p + 25p = 540

54p = 540

\tt{\rightarrow p=\dfrac{540}{54}}

p = 10

Now,

\textbf{\underline{Sides\;are:-}}

12p = 12 × 10 = 120 cm

17p = 17 × 10 = 170 cm

25p = 25 × 10 = 250 cm

\textbf{\underline{Hence}}

{\boxed{\sf\:{s=\dfrac{120+170+250}{2}}}}

\tt{\rightarrow s=\dfrac{540}{2}}

s = 270 cm

{\boxed{\sf\:{Using\;Heron\;Formula}}}

\tt{\rightarrow\sqrt{s(s-a)(s-b)(s-c)}}

\tt{\rightarrow\sqrt{270(270-120)(270-170)(270-250)}}

\tt{\rightarrow\sqrt{270\times 150\times 100\times 20}}

= 9000 cm²

Similar questions