Math, asked by pravalikapenta, 4 months ago

sides of a triangle are in the ratio of 12:17:25 and it's perimeter is 540cm . find its area​

Answers

Answered by itssmruti10
2

Answer:

⇒Let x be common ratio

∴ Sides of triangle will be: 12x,17x and 25x

⇒Perimeter =540 cm(given)

⇒12x+17x+25x=540 cm,

⇒54x=540 cm

⇒x=10 cm

∴ Sides of triangle: a=120,b=170,c=250 cms

⇒2S=540

⇒S=270 cm

A=

s(s−a)(s−b)(s−c)

=

270(270−120)(270−170)(270−250)

cm

2

=

270×150×100×20

cm

2

A=9000 cm

2

Answered by ItzMayu
16

Answer:

\large{\underline{\underline{\bf{Given:-}}}}

  • Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540cm.

\begin{gathered}\end{gathered}

\large{\underline{\underline{\bf{To \: Find:-}}}}

  • Area of Triangle

\begin{gathered}\end{gathered}

\large{\underline{\underline{\bf{Soluntion :-}}}}

\underline{\pmb{\sf{\red{Let\: the\: side\: be,,}}}}

  • 12x
  • 17x
  • 25x

\begin{gathered}\end{gathered}

\underline{\pmb{\sf{\red{According\: to\: the\: question,}}}}

:\implies 12x +17x + 25x = 540

:\implies 54x =540

:\implies x = 10

Therefore the value x is 10

\begin{gathered}\end{gathered}

\underline{\pmb{\sf{\red{Hence,}}}}

  • 12x =12 *10 =120
  • 17x =17 *10=170
  • 25x= 25 * 10=250

The sides of the triangle are 120,170,250

\begin{gathered}\end{gathered}

\underline{\pmb{\sf{\red{Now, To \: find\: area\: of\: triangle,}}}}

S = a+b+c/2

:\implies 120 +170 +250 /2

:\implies 270

By using herons formula

:\implies √s( s-a) (s-b) (s-c)

:\implies √270(270-120) (2 70-170) (270-250)

:\implies √270*150*100*20

:\implies √81000000

:\implies 9000cm

Therefore the area of the triangle is 9000 cm².

Similar questions