Math, asked by rahil5152, 5 months ago

sides of a triangle are in the ratio of 12:17:25
and it's perimeter is 540 cm. find it's area.

Answers

Answered by BrainlyEmpire
30

  \implies\huge \sf \underline \red{Q uestion}

sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540 cm. find its area.

__________________________________________________

  \implies\huge \sf \underline \blue{Answer}

 \bf{ \boxed{ \underline{ \underline{ \green{ \bf{Area = 9000 \:  {cm}^{2} \: }}}}}}

______________________________________________________

 \implies \huge \sf \underline \orange{To \:  find}

area = ?

_________________________________________________

 \implies \huge \sf \underline \pink{solution}

Do you know that area of triangle :-

 \bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} \: }}}}}}

Given area of triangle

s = semi perimeter

a,b,c = sides of the triangle

From the Question,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{given \: perimeter = 540 \: cm}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{semi\: perimeter =  s =  \dfrac{perimeter}{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{s =  \dfrac{540}{2}}

  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{s = 270cm}

From the Question Given ratios of sides ,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \blue{Given \: ratios \: of \: sides = 12 :17 :  25}

let take sides a,b,c

a = 12x cm

b = 17 x cm

c = 25 x cm

so,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm{perimeter = 540 \: cm}

  \:  \:  \: \  \:  \:  \:  \:  \:  \:  \rm{a + b + c = 540}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{ = 12x + 17x + 25x = 540}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{ = 29x + 25x = 540}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{ = 54x = 540}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm{  x =  \dfrac{540}{54}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{x  = 10}

then,

 \tt \purple{a = 12x \: cm = 12 \times 10 = 120 \: cm}

 \tt \green{b = 17x \: cm = 17 \times 10 = 170cm}

 \tt \pink{c = 25x \: cm = 25 \times 100 = 250cm}

Now,

 \bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} \: }}}}}}

a = 120cm

b= 170 cm

c = 250 cm

s = 270 cm

  \:  \: \sf{Area =  \sqrt{270(270 - 120)(270 - 170)(270 - 250) {cm}^{2} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{270 \times 150 \times 100 \times 20 {m}^{2} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{(27 \times 15 \times 2)  \times  {(10)}^{5} }}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{(27 \times 30) \times  {(10)}^{5} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{(27 \times 3) \times  {(10)}^{6} }}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ =  \sqrt{(81) \times  {(10)}^{6}} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{81} \times  \sqrt{ {(10)}^{6}} }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ =  \sqrt{ {9}^{2}  \times  \sqrt{ {(10)}^{6}} } }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ = (9) \times  {(10}^{6}) \frac{1}{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = (9) \times {(10}^{3})}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 9000}

 \rm \pink{Area  = 9000 \:  {cm}^{2} }

Answered by Anonymous
30

Answer:

ratio of sides

12: 17:25

let them be

12x,17x, 25x respectively

perimeter of a triangle = sum of all sides

540 = 12x,17x, 25x

540 = 54x

x = 10

all sides measure

12x = 12×10 = 120

17x = 17× 10 = 170

25x= 25 × 10 = 250

it's semipetimeter = 540/2

= 270

using heron's formula area of the triangle =

root (s)(s-a)(s-b)(s-c)}

where s is the semipetimeter and a,b,c

area the sides of the triangle.

root {( 270)(270-120)(270-170)(270-250)}

= 9000cm²

hope this helps you

Similar questions