Math, asked by jhamahendar291, 3 months ago

Sides of a triangle are in the ratio of 12: 17: 25 and its perimeter is

540cm. Find its area. ​

Answers

Answered by ksambasivarao566
0

Step-by-step explanation:

plz mark me as brilliant

Attachments:
Answered by DüllStâr
83

Question:

Sides of a triangle are in the ratio of 12: 17: 25 and its perimeter is 540cm. Find its area.

To find:

  • Area of triangle

Given :

  • Sides of a triangle are in the ratio= 12: 17: 25
  • Perimeter of triangle = 540 cm

Let:

  • Side 1 = 12x
  • Side 2= 17 x
  • Side 3 = 25x

Solution :

To find area of triangle first we should know length of sides of triangle

So first let's find sides of triangle

We know:

 \boxed{ \boxed{ \rm{}perimeter \: of \: triangle = Side_1 + Side_2 +Side_3 }}

By using this formula we can find value of x

So let's find it!

: \implies\sf{}perimeter \: of \: triangle = Side_1 + Side_2 +Side_3 \\

put value of Perimeter and sides which we have supposed.

: \implies\sf{}540= 12x + 17x + 25x \\

: \implies\sf{}540= 54x \\

: \implies\sf{} \dfrac{540}{54} = x \\

: \implies\sf{} \cancel\dfrac{540}{54} = x \\

: \implies\underline{\boxed{\sf{}x = 10 \: cm}}\\

Before finding values of sides of triangle let's Verify value of x

Verification:

: \implies\sf{}540= 12x + 17x + 25x \\

put value of x in this equation:

: \implies\sf{}540= 12 \times 10+ 17 \times 10 + 25 \times 10 \\

: \implies\sf{}540= 120+ 170 + 250 \\

: \implies\underline{\boxed{\sf{}540= 540}}\\

 \large \gray{ \rm\ddag\:Hence \: verified \: \ddag  }

Now Let's find length of sides of triangle:

Side 1:

  • Side 1 = 12x
  • Side 1 = 12×10
  • Side 1 = 120 cm

Side 2:

  • Side 2= 17x
  • Side 2 = 17×10
  • Side 2=170 cm

Side 3:

  • Side 3= 25x
  • Side 3= 25× 10
  • Side 3= 250 cm

Now Let's find Area by using heroes formula:

So to find area first we should know value of semi perimeter:

We know:

\boxed{\boxed{ \rm{}s =  \dfrac{side_1 + side_2 + side_3}{2} }}

by using this formula we can find value of semi perimeter

: \implies\sf{}s =  \dfrac{side_1 + side_2 + side_3}{2}

insert values of side 1, side 2, side 3

: \implies\sf{}s =  \dfrac{120+ 170+ 250}{2}

: \implies\sf{}s =  \dfrac{540}{2}

: \implies\sf{}s = \cancel\dfrac{540}{2}

: \implies\sf{}s = 270 \: cm

Now Finally Let's find area:

We know:

\boxed{\boxed{ \rm{}Area \: of \: triangle = \sqrt{s(s - side_1)(s - side_2)(s - side_3)}  }}

by using this formula we can find value of Area of triangle

: \implies\sf{}Area \: of \: triangle = \sqrt{s(s - side_1)(s - side_2)(s - side_3)} \\

put values of semi perimeter and sides of triangle:

: \implies\sf{}Area \: of \: triangle = \sqrt{270(270- 120)(270 - 170)(270 - 250)} \\

: \implies\sf{}Area \: of \: triangle = \sqrt{270 \times 150 \times 100 \times 20} \\

: \implies\sf{}Area \: of \: triangle = \sqrt{27 \times 3 \times 10 {}^{6} } \\

: \implies\sf{}Area \: of \: triangle = {3}^{ \frac{4}{2}  }  \times  {10}^{ \frac{6}{2} }  \\

: \implies\sf{}Area \: of \: triangle  =  {3}^{2} \times  {10}^{3}  \\

: \implies\sf{}Area \: of \: triangle  =  9\times  1000  \\

: \implies \underline{ \boxed{\sf{}Area \: of \: triangle  =  9000  \:  {cm}^{2}}} \\

______________________________________________


Berseria: Perfect Answer :)
DüllStâr: thank you ! :D
Similar questions