Math, asked by agaur9013, 5 months ago

Sides of a triangle are in the ratio of (8:7:3) and its perimeter is 180 cm, find its area?​

Answers

Answered by Anonymous
7

{\huge{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{magenta}{\cal{Answer}}}}}

Ratio of sides=8:7:3

Let the sides be x=8x:7x:3x

Given Perimter=180 cm

Perimeter of triangle= Sum of all sides

180=8x+7x+3x

  \large \tt \cancel\frac{180}{18}  = x = 10

Sides:-

8x=8×10=80 cm

7x=7×10=70 cm

3x=3×10=30 cm

Semi-Perimter= \tt \frac{180}{2}  = 90 \: cm

Area of triangle=

 \sf \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \implies \sf \sqrt{90(90 - 80)(90 - 70)(90 - 30)}  \\  \\  \sf \implies \sqrt{90 \times 40 \times 50 \times 60}  \\  \\  \sf \implies \sqrt{9 \times 10 \times 4 \times 10 \times 5 \times 10 \times 6 \times 10}  \\  \\  \sf \implies100 \sqrt{1080}  \\  \\  \sf \implies100 \times 36.86 \\  \\  \sf \implies100 \times  \frac{3686}{100}  = 3686 {cm}^{2}

{\underline{❥ʜᴏᴘᴇ  \: ɪᴛ \:  ʜᴇʟᴘs  \: ʏᴏᴜ.....}}

Answered by Anonymous
0

Answer:

Let side of the park be, a=5x,b=6x,c=7x

also, 2s=180m,

s=90m

now, a+b+c=180

5x+6x+7x=180

x=10

∴a=50m,b=60mbc=70m

Area of park=

90(90−50)(90−60)(90−70)

=

90×40×30×20

=

3×30×2×20×30×20

=20×30

6

=600

6

m

2

Similar questions