Math, asked by paramasivamsanthosh, 4 months ago

sides of a triangle are in the ratio of12:17:25 and it's perimeter is 540cm . find its area​

Answers

Answered by PoushaliSen
2

Answer:

9000 cm2

Step-by-step explanation:

⇒Let x be common ratio

∴ Sides of triangle will be: 12x,17x and 25x

⇒Perimeter =540 cm(given)

⇒12x+17x+25x=540 cm,

⇒54x=540 cm

⇒x=10 cm

∴ Sides of triangle: a=120,b=170,c=250 cms

⇒2S=540

⇒S=270 cm

A=

s(s−a)(s−b)(s−c)

=

270(270−120)(270−170)(270−250)

cm

2

=

270×150×100×20

cm

2

A=9000 cm

2

Answered by brainlyofficial11
4

Given :-

  • ratio of sides of a triangle is 12:17:25
  • perimeter of the triangle = 540 cm

To Find :-

  • find the area of the triangle ?

Solution :-

let the sides of the triangle are 12x , 17x and 25x

and we know that,

 \boxed{ \bold{perimeter \: of \triangle = sum \: of \: sides}}

 \bold{: \implies 12x + 17x + 25x = 540 }  \\   \\  \bold{: \implies 54x = 540}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies x = \cancel  \frac{540}{54}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies x = 10 }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:

so, the sides of the triangle are

  • 12 × 10 = 120 cm
  • 17 × 10 = 170 cm
  • 25 × 10 = 250 cm

__________________________

now, find the area of the triangle by using heron's formula

if the sides of the triangle are a, b and c then,

 \boxed { \orange{ \bold{ar( \triangle) =  \sqrt{s(s - a)(s - b)(s - c)} }}} \\

where, \boxed{  \bold{\orange{s = \frac{perimeter}{2}  }}}

and here

  • a = 120 cm
  • b = 170 cm
  • c = 250 cm

then,

 \bold{s =   \cancel\frac{540 \: cm}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ : \implies s = 270 \: cm }

now, area of the triangle

 \bold{: ↦ \:  \sqrt{s(s - a)(s - b)(s - c)} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{:↦ \:  \sqrt{270(270 - 120)(270 - 170)(270 - 250)}  } \\  \\  \bold{:↦ \:  \sqrt{270 \times 150 \times 100 \times 20}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:↦ \:  100 \sqrt{27 \times 15 \times 10 \times 2}   } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: ↦ \:100 \sqrt{8100}  }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: ↦ \: 100 \times 90}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\  \bold{: ↦ \:9000  \:  {cm}^{2}  }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence, area of the triangle is 9000 cm²

Similar questions