Math, asked by DevaGanerYt, 1 month ago

sides of angle pqr and angle xyz are parallel to each other prove that pqr = angle xyz​

Attachments:

Answers

Answered by MathHacker001
3

Appropriate Question :-

sides of angle PQR and angle XYZ are parallel to each other prove that ∆PQR = angle ∆XYZ.

Solution :-

Here,

\rm:\longmapsto{PQ \parallel XY \: and \: PQ  = XY } \\  \\  \rm :\longmapsto{PR \parallel X Z \: and \:PR = X Z  } \:

Taking  \triangle PQR and  \triangle XYZ

PQ = XY

PR = XZ

 \rm :\longmapsto{ \angle QPX =  \angle YXM = a} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \rm : \longmapsto{ \angle RPX =  \angle ZXM = b} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \rm :   \longmapsto{ \angle XYZ =  \angle YXM  +  \angle ZXM = a + b} \\  \\   \rm :  \longmapsto{\angle XYZ  =  \angle PQR = a + b} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence,

\rm:\longmapsto \red{\triangle PQR \cong \triangle XYZ }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Asminmaharana
1

Answer:

line Z and R is parallel to each other.

so angleY = angle1 ( corresponding angles )

Then ,

P and X is parallel to each other.

so , angle1 = angle2 ( corresponding angles )

angle2 is angleQ

so angleY=angleQ ( hence proved )

I hope it will helpful.

Attachments:
Similar questions