Math, asked by acheshkumar4238, 1 year ago

Sides of the triangle are in ratio 12:17:25 ands its perimeter is 540 cm. find its area

Answers

Answered by ravishah8405053079
5


Let ratio be x
17x+12x+25x=54x
X=540/54=10
And see in the photo

Attachments:
Answered by BrainlyAlienBrain
235

\huge{\underline{\underline{\sf{\blue{SOLUTION:-}}}}}

\sf{\underline{\pink{Answer-}}} </h2><h3>

  • The area of this triangle is 9000 cm²

\sf{\underline{\pink{Given-}}}

  • Sides of the traingle are ratio = 12:17:25

  • the perimeter of the triangle = 540 cm

\sf{\underline{\pink{To \: Find-}}}

  • The area of the traingle

\sf{\underline{\pink{Explanation-}}}

  • Let the common ratio between the sides of the given triangle be x.

  • Therefore, the side of the triangle will be 12x, 17x, and 25x.

\sf{\underline\green{Formula\:Used\:Here-}}

\bigstar\:\boxed{\sf{\red{Heron's \:  formula,}}}

\sf{\underline{\pink{Putting\:the\:values:-}}}

\sf\longrightarrow Perimeter \:  of \:  this  \: triangle  = 540 cm

\sf\longrightarrow 12x + 17x + 25x  =  540 cm

\sf\longrightarrow54x = 540 cm</p><p></p><p>

\sf\longrightarrow x = 10cm

  • Sides of the triangle will be 120 cm, 170 cm, and 250 cm

\sf{\underline{\blue{Now-}}}

 \sf \longrightarrow s =  \frac{perimeter \: of \: traingle}{2}  =  \frac{540cm}{2}  = 270cm

\sf{\underline{\green{Heron's \:  formula,-}}}

\sf \longrightarrow area \: of \: traingle  =  \sqrt{s(s - a)(s - b)(s - c)}

\sf \longrightarrow \sqrt{270(270 - 120)(270 - 170)(270 - 250) } ^{cm2}

\sf \longrightarrow \sqrt{270 \times 150 \times 100 \times 20}  ^{ {cm}^{2} }

\sf \longrightarrow9000 \:  {cm}^{2}

ㅤㅤㅤ⠀

  • Hence,The area of this triangle is 9000 cm²

Similar questions