Math, asked by rajithanairpp2018, 10 months ago

sides of triangle are 10, 10, 8 ,find its area using herons formula​

Answers

Answered by sakshi000152
0

Answer:

8√21

Step-by-step explanation:

Area of triangle= √{s(s-a)(s-b)(s-c)}

where s= (a+b+c)/2

so, s= (10+10+8)/2

= 28/2=14

Area of triangle=

√{14(14-10)(14-10)(14-8)}

√{14×4×4×6}

√(7×2×4×4×2×3)

8√21

Hope it will helps u...

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=36.66\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle =10 cm,10 cm,8 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{10+10+ 8}{2} \\ \\ : \implies s = \frac{28}{2} \\ \\ \green{ : \implies s =14 } \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{14(14- 10)(14-10)(14- 8)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{14\times 4\times 4\times 6} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{1344} \\ \\ : \implies \text{Area \: of \: triangle =}36.66\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 36.66\: {cm}}^{2} }

Similar questions