Math, asked by loke4151, 11 months ago

Sides of triangle are 45cm,39cm,and 42cm.
Find its area.

Answers

Answered by Anonymous
26

\large{\underline{\underline{\mathfrak{\pink{\sf{Answer-}}}}}}

\large{\underline{\boxed{\sf{\blue{Area\:of\:triangle=756\:cm^2}}}}}

\large{\underline{\underline{\mathfrak{\pink{\sf{Explanation-}}}}}}

\begin{lgathered}\bold{Given\:sides} \begin{cases}\sf{AB=45cm} \\ \sf{BC=39cm}\\ \sf{AC=42cm}\end{cases}\end{lgathered}

\orange{\boxed{\pink{\underline{\red{\mathfrak{To\:find-}}}}}}

  • Area of ∆ABC

\orange{\boxed{\pink{\underline{\red{\mathfrak{Formula\:used-}}}}}}

Semi perimeter :

\sf{\dfrac{a+b+c}{2}}

Heron's formula :

\sf{\sqrt{s(s - a)(s - b)(s - c)}}

\orange{\boxed{\pink{\underline{\red{\mathfrak{Solution-}}}}}}

In ∆ABC,

Semi Perimeter ( S ) = \sf{\dfrac{a+b+c}{2}}

Here a = AB = 45cm

b = BC = 39cm

c = AC = 42 cm

\implies \sf{\dfrac{45+39+42}{2}}

\implies \sf{\dfrac{126}{2}}

\implies \sf{\cancel{\dfrac{126}{2}}}

\implies \sf{63cm}

By heron's formula :

\sf{\sqrt{s(s - a)(s - b)(s - c)}}

\implies \sf{\sqrt{63(63 - 45)(63 - 39)(63 - 42)}}

\implies \sf{\sqrt{63(18)(24)(21)}}

Now, making prime factors,

\implies \sf{\sqrt{3×3×7(3×3×2)(2×2×2×3)(3×7)}}

\implies \sf{\sqrt{571536}}

\implies 756 cm²

\large{\underline{\boxed{\sf{\blue{Area\:of\:triangle=756\:cm^2}}}}}

_____________________

#answerwithquality

#BAL

Attachments:
Similar questions