Biology, asked by mahikaanirman, 4 months ago

Significance of food chain:-
I hope it will help you

Attachments:

Answers

Answered by mananChoudhury
0

Answer:

thanks for free points

Answered by RoastingQueen
0

Explanation:

\sf {\dfrac {1}{x}}+\dfrac {1}{y}=4\dots\dots (1)

\sf \dfrac {2}{x}+\dfrac {4}{y}=8 \dots\dots (2)

Let

\qquad\quad {:}\longmapsto\sf \dfrac {1}{x}=u

\qquad\quad {:}\longmapsto\sf \dfrac {1}{y}=v

Now the new equations

\qquad\quad {:}\longmapsto\sf u+v=4\dots\dots (3)

\qquad\quad {:}\longmapsto\sf 2u-4v=8

Make it simplified

\qquad\quad {:}\longmapsto\sf \cancel {2} (u-2v)=\cancel {2} (4)

\qquad\quad {:}\longmapsto\sf u-2v=4\dots\dots (4)

There are now Four ways by which we can solve

___________________________

\qquad\quad {:}\longmapsto\sf Substitution\:method

\qquad\quad {:}\longmapsto\sf Elimination \:method

\qquad\quad {:}\longmapsto\sf Cross\:multiplication\:method

\qquad\quad {:}\longmapsto\sf Cramer 's\: rule

___________________________

Let's use Elimination method

By multiplying eq (3) by 2 and eq (4) by 1 we get

\qquad\quad {:}\longmapsto\sf 2u+2v=8\dots\dots(5)

\qquad\quad {:}\longmapsto\sf u-2v=4\dots\dots (6)

Substract eq(6) from eq (5)

we get

\qquad\quad {:}\longmapsto{\underline{\boxed{\sf u=4 }}}

Substitute the value in eq (3)

\qquad\quad {:}\longmapsto\sf u+v=4

\qquad\quad {:}\longmapsto\sf 4+v=4

\qquad\quad {:}\longmapsto\sf v=4-4

\qquad\quad {:}\longmapsto{\underline{\boxed{\sf v=0}}}

____________________________

\qquad\quad {:}\longmapsto\sf u={\dfrac {1}{x}} \\ \implies \sf \dfrac {1}{x}=4 \\ \implies x={\dfrac {1}{4}}

\qquad\quad {:}\longmapsto\sf v={\dfrac {1}{y}} \\ \implies\sf {\dfrac {1}{y}}=0 \\ \implies y=0

\therefore{\underline{\boxed{\sf (x,y)=({\dfrac {1}{4}}, 0)}}}

\Large\underbrace {Confused!!Let's\: verify}

We have to put the values of x and y in the equation instead of x and y . If the answer comes zero then our solution is correct.

substitute the values in eq (1)

\qquad\quad{:}\longrightarrow\sf \dfrac {1}{x}+{\dfrac {1}{y}}=4

\qquad\quad{:}\longrightarrow\sf \dfrac {1}{\dfrac {1}{4}}+{\dfrac {1}{0}}=4

\qquad\quad{:}\longrightarrow\sf 4+0=4

\qquad\quad{:}\longrightarrow\sf 4-4=0

\qquad\quad{:}\longrightarrow\sf 0=0

\therefore\underline{\sf Hence\:Verified}

Similar questions