silplify the following without multiplying:
Answers
Answer
1
Answer:
i)103-107
\boxed{\underline {Method 1}}
Method1
(100 + 3) (100 + 7)
Now, by using identity (x + a) (x + b) = x² + (a+b)*x + ab So,
x = 100, a = 3, b = 7
= (100)² + (3+7)*100 + (3*7)
= 10000 + 1000 + 21
=
11021\bf{(ii) 95 \times 96}(ii)95-96 \boxed{\underline {Method 1}}
Method1
(90 + 5) (90 + 6)
by using identity (x + a) (x + b) = x² + (a+b)*x + ab So,
x = 90, a = 5, b = 6
= (90)² + (5+6)*90 + (5*6)
= 8100 + 990 + 30
= 912010000 + 1000 + 21
= 11021
\boxed{\underline {Method 2}}
Method2
(110 - 7) (110 - 3)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100, a = (-7), b = (-3)
= (110)² + { (-7) + (-3) }*110 + {(-7)*(-3)}
= 12100 + (-10)*110 + 21
= 21200 - 1100 + 21
= 11021\bf{(iii) 104 \times 96}(iii)104x96 \boxed{\underline {Method 1}}
Method1
(100 + 4) (100 - 4)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab So,
x = 100, a = 4, b = (-4)
= (100)² + { 4 + (-4) }*100 + 4*(-4)
= 10000 + (4-4)*100 - 16
= 10000+ 0*100 - 16
= 10000 - 16\boxed{\underline {Method 2}}
Method2
(1005) (1004)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100, a = (-5), b = (-4)
= (100)² + { (-5) + (-4) }*100 + 20
= 10000 + (-9)*100 + 20
= 10000 - 9000 + 20
= 10020 - 900
= 9120
Solution:
(a) 109 × 50
= (1.09×10²) × (5×10)
= 1.09 × 5 × 10²+¹
= 1.09 × 5 × 10³
(b) 65 × 102
= (6.5×10) × (1.02×10²)
= 6.5 × 1.02 × 10¹+²
= 6.5 × 1.02 × 10³
(c) 102 ×21
= (1.02×10²) × (2.1×10)
= 1.02 × 2.1 × 10²+¹
= 1.02 × 2.1 × 10³
(d) 191 + 200 + 109
= 391 + 109
= 500
(e) 20 × 155
= (2×10) × (1.55×10²)
= 2 × 1.55 × 10¹+²
= 2 × 1.55 × 10³