Math, asked by Diva11th, 1 year ago

simlpify the following expression

Attachments:

Answers

Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
 {( \frac{81}{16} )}^{ -  \frac{3}{4} }  \times  {( \frac{9}{25} )}^{ \frac{3}{2} }  \div   {( \frac{5}{2} )}^{ - 3}  \\

Splitting we get,

 =  {( \frac{3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2}) }^{ -  \frac{3}{4} }  \times  (\frac{3 \times 3}{5 \times 5} ) ^{ \frac{3}{2} }  \div  (\frac{5}{2} )^{ - 3}  \\

We know that,
 {( \frac{a}{b} )}^{ - m}  =  {( \frac{b}{a} )}^{m}  \\
 {( \frac{ {3}^{4} }{ {2}^{4} }) }^{ -  \frac{3}{4} }  \times  (\frac{ {3}^{2} }{ {5}^{2} })^{ \frac{3}{2} }   \div ( \frac{2}{5} ) ^{3}  \\   \\ \\  =  {( \frac{3}{2} )}^{4 \times  -  \frac{3}{4} }  \times  {( \frac{3}{5} )}^{2 \times  \frac{3}{2} }  \times   {( \frac{5}{2} )}^{3}  \\  \\  \\  =  {( \frac{3}{2} )}^{ - 3}  \times  {( \frac{3}{5} )}^{3}   \times  {( \frac{5}{2} )}^{3}  \\  \\   \\  =  {( \frac{2}{3} )}^{3}  \times   {( \frac{3}{5} )}^{3}  \times  {( \frac{5}{2} )}^{3}  \\  \\   \\  =   \frac{ {2}^{3}  \times  {3}^{3}  \times  {5}^{3} }{ {3}^{3} \times  {5}^{3}  \times  {2}^{3}  }  \\   \\ using \: the \: identity \\  \\   \frac{ {a}^{m} }{ {a}^{n} }   =  {a}^{m - n}    \\  \\ \\  =  {2}^{3 - 3}  \times  {3}^{3 - 3}  \times  {5}^{3 - 3}  \\  \\   =  {2}^{0}  \times  {3}^{0}   \times  {5}^{0}  \\  \\  = 1 \times 1 \times 1 \\  \\   = 1


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions