Math, asked by StudyKing001, 5 hours ago

Simple Question !!!


The volume of a cylinder is 1617 cm³. It's based and height are in the ratio 2:3 .Find the Curved Surface area of cylinder. ​

Answers

Answered by soni9250
3

Answer:

770 cm^2.

Step-by-step explanation:

Given ratio = 2:3 and volume = 1617 cm^3.

Let the radius and height of the cylinder be 2x and 3x.   ---- (1)

Given volume of cylinder = 1617 cm^3

              pir^2h = 1617 cm^3

              (22/7) * (2x)^2 * 3x = 1617

               22/7 * 4x^2 * 3x = 1617

               x = 7/2.

Substitute x = 7/x in (1), we get

radius = 2 * 7/2 = 7

height = 3 * 7/2 = 21/2.

T.S.A of the cylinder = 2pir(h+r)

                                  = 2 * 22/7 * 7 * (21/2 + 7)

                                 = 22 * 35

                                 = 770 cm^2.

Hope it is helpful

Mark me as Brainliest

Answered by itzmedipayan2
3

Answer:

 \huge  \hookrightarrow \sf \red{question}

The volume of a cylinder is 1617 cm³. It's based and height are in the ratio 2:3 .Find the Curved Surface area of cylinder.

 \huge \bf \dag  \blue{answer}

Let the radius be r

Let the height be h

So,

 \sf \:  \frac{radius}{height} =  \frac{2}{3}   \\  \\        \implies \: r =  \frac{2}{3} h \\  \\  \implies \: h =  \frac{3}{2} r

 \star \sf \: volume =  {\pi r}^{2} h =  {1617cm}^{3}  \\  \\  =  \frac{22}{7}  \times  {r}^{2}  \times  \frac{3}{2} r = 1617 \\  \\  \implies \:  {r}^{3}  =  \frac{ { \cancel{1617}} \:  \: ^{ { \cancel{147}} \:  \: ^{49} }  \times 7 \times  \cancel2}{ { \cancel{22}} \:  \: ^{ \cancel{11}}  \times  \cancel3}   \\  \\  = 49 \times 7 = 343

 {r}^{3}  = 343 \\  \\  \therefore \: r = 3 \sqrt{343}  = 7 \\  \\  \star \: h =  \frac{3}{2}  \times 7 \\  \\  = 10.5cm

 \star \sf \: curved \: surface \: area = \\  2 \times  \frac{22}{ \cancel7} \times 10.5 \times \cancel 7  \\  \\  = 2 \times 22 \times 10.5 \\  \\  = 44 \times 10.5 \\  \\  \green{ \boxed{ \red{ =  {462cm}^{2}}}}

Hope it helps you from my side

:)

Similar questions