Math, asked by Bhonppbs4hwarab, 1 year ago

Simplest Form :-Cot inv(sqrt( 1 + cos3x / 1 - cos3x) )

Answers

Answered by duragpalsingh
36
Please see the attachment. 
Attachments:

duragpalsingh: click on thanks link above!
Answered by pinquancaro
15

Answer:

\cot^{-1}(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}})=\frac{3x}{2}

Step-by-step explanation:

Given : Expression \cot^{-1}(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}})

To find : Simplify the expression ?

Solution :

We solve the expression by applying trigonometry properties,

\cot^{-1}(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}})

Applying,

1+\cos x=2\cos^2(\frac{x}{2})

1-\cos x=2\sin^2(\frac{x}{2})

=\cot^{-1}(\sqrt{\frac{2\cos^2(\frac{3x}{2})}{2\sin^2(\frac{3x}{2})}})

=\cot^{-1}(\sqrt{\frac{\cos^2(\frac{3x}{2})}{\sin^2(\frac{3x}{2})}})

We know, \cot x= \frac{\cos x}{\sin x}

=\cot^{-1}(\sqrt{\cot^2(\frac{3x}{2}})

=\cot^{-1}(cot(\frac{3x}{2})

We know, \cot^{-1}\cot (x)=x

=\frac{3x}{2}

Therefore, \cot^{-1}(\sqrt{\frac{1+\cos 3x}{1-\cos 3x}})=\frac{3x}{2}

Similar questions