Math, asked by nrspanchal, 10 months ago

simplfy 5+√15/5-√15 + 5-√15/5+√15​

Answers

Answered by Anonymous
4

Solution :-

We have to solve

 \sf{ \dfrac{5 + \sqrt{15}}{ 5 - \sqrt{15}} + \dfrac{5 - \sqrt{15} }{ 5 + \sqrt{15}}}

By rationalising denominator of

(i)

 \sf{ \dfrac{5 + \sqrt{15}}{ 5 - \sqrt{15}}}

 = \sf{ \dfrac{5 + \sqrt{15}}{ 5 - \sqrt{15}} \times  \dfrac{5 + \sqrt{15} }{ 5 + \sqrt{15}}}

 = \sf{ \dfrac{(5 + \sqrt{15})^2}{ 5^2 - \sqrt{15}^2} }

 = \sf{ \dfrac{(5 + \sqrt{15})^2}{ 25 - 15} }

 = \sf{ \dfrac{(25 + 15 + 2.(5).\sqrt{15}}{ 5^2 - \sqrt{15}^2} }

  = \sf{ \dfrac{40 +10\sqrt{15}}{10}}

 = \sf{ 4 + \sqrt{5}}

(ii)

 \sf{ \dfrac{5 - \sqrt{15}}{ 5 + \sqrt{15}}}

 = \sf{ \dfrac{5 - \sqrt{15}}{ 5 + \sqrt{15}} \times  \dfrac{5 - \sqrt{15} }{ 5 - \sqrt{15}}}

 = \sf{ \dfrac{(5 - \sqrt{15})^2}{ 5^2 - \sqrt{15}^2} }

 = \sf{ \dfrac{(5 - \sqrt{15})^2}{ 25 - 15} }

 = \sf{ \dfrac{(25 + 15 - 2.(5).\sqrt{15}}{ 5^2 - \sqrt{15}^2} }

  = \sf{ \dfrac{40 - 10\sqrt{15}}{10}}

 = \sf{ 4 - \sqrt{5}}

So

 \rightarrow \sf{ \dfrac{5 + \sqrt{15}}{ 5 - \sqrt{15}} + \dfrac{5 - \sqrt{15} }{ 5 + \sqrt{15}}}

 = \sf { (4 + \sqrt{5} ) + ( 4 - \sqrt{5})}

 = \sf{ 8}

Answered by TheVenomGirl
3

 \huge{\underline{\mathcal{\blue{SOLUTION :-}}}}

 \star \underline{ \mathbb{OUR \: QUESTION}}

 \sf{ \dfrac{5 + \sqrt{15}}{ 5 - \sqrt{15}} + \dfrac{5 - \sqrt{15} }{ 5 + \sqrt{15}}}

 \star  \underline{ \mathbb{RATIONALISING \: DENOMINATORS}}

 \sf{ (I) \: \dfrac{5 + \sqrt{15}}{ 5 - \sqrt{15}}}

 = \sf{ \dfrac{5 + \sqrt{15}}{ 5 - \sqrt{15}} \times  \dfrac{5 + \sqrt{15} }{ 5 + \sqrt{15}}}

 = \sf{ \dfrac{(5 + \sqrt{15})^2}{ 5^2 - \sqrt{15}^2} }

 = \sf{ \dfrac{5^2 + \sqrt{15}^2 + 2(5)(\sqrt{15})}{25-15}}

 = \sf{ \dfrac{25 + 15 + 2(5)(\sqrt{15})}{ 10} }

  = \sf{ \dfrac{40 +10\sqrt{15}}{10}}

 \boxed{= \sf{ 4 + \sqrt{5}}} ...(i)

And

 \sf{(II) \: \dfrac{5 - \sqrt{15}}{ 5 + \sqrt{15}}}

 = \sf{ \dfrac{5 - \sqrt{15}}{ 5 + \sqrt{15}} \times  \dfrac{5 - \sqrt{15} }{ 5 - \sqrt{15}}}

 = \sf{ \dfrac{5^2 + \sqrt{15}^2 - 2(5)(\sqrt{15})}{25-15}}

 = \sf{ \dfrac{25 + 15 - 2(5)(\sqrt{15})}{ 10} }

 = \sf{ \dfrac{(25 + 15 - 2.(5).\sqrt{15}}{ 25 - 15} }

  = \sf{ \dfrac{40 - 10\sqrt{15}}{10}}

 \boxed{= \sf{ 4 - \sqrt{5}}} ....(ii)

\underline{\mathbb{SO\: BY\: ADDING\: (i)\: AND\:  (ii)} }

 = \sf { (4 + \sqrt{5} ) + ( 4 - \sqrt{5})}

 \boxed{= \sf{ 8}}

Similar questions