simplif the bionomials (2/3x+4) (3/2x+6) - (1/7x +1 )
Answers
Answered by
0
(2x/3+4)(3x/2+6)(1/7x+1)(1/7x-1)
Final result :
(x + 6) • (x + 4) • (x + 7) • (x - 7)
—————————————————————————————————————
49
Step by step solution :
Step 1 :
1
Simplify —
7
Equation at the end of step 1 :
x x 1 1
((((2•—)+4)•((3•—)+6))•((—•x)+1))•((—•x)-1)
3 2 7 7
Step 2 :
Rewriting the whole as an Equivalent Fraction :
2.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using 7 as the denominator :
1 1 • 7
1 = — = —————
1 7
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
2.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x - (7) x - 7
——————— = —————
7 7
Equation at the end of step 2 :
x x 1 (x-7)
((((2•—)+4)•((3•—)+6))•((—•x)+1))•—————
3 2 7 7
Step 3 :
1
Simplify —
7
Equation at the end of step 3 :
x x 1 (x-7)
((((2•—)+4)•((3•—)+6))•((—•x)+1))•—————
3 2 7 7
Step 4 :
Rewriting the whole as an Equivalent Fraction :
4.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 7 as the denominator :
1 1 • 7
1 = — = —————
1 7
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
x + 7 x + 7
————— = —————
7 7
Equation at the end of step 4 :
x x (x+7) (x-7)
((((2•—)+4)•((3•—)+6))•—————)•—————
3 2 7 7
Step 5 :
x
Simplify —
2
Equation at the end of step 5 :
x x (x+7) (x-7)
((((2•—)+4)•((3•—)+6))•—————)•—————
3 2 7 7
Step 6 :
Rewriting the whole as an Equivalent Fraction :
6.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 2 as the denominator :
6 6 • 2
6 = — = —————
1 2
Adding fractions that have a common denominator :
6.2 Adding up the two equivalent fractions
3x + 6 • 2 3x + 12
—————————— = ———————
2 2
Equation at the end of step 6 :
x (3x+12) (x+7) (x-7)
((((2•—)+4)•———————)•—————)•—————
3 2 7 7
Step 7 :
x
Simplify —
3
Equation at the end of step 7 :
x (3x+12) (x+7) (x-7)
((((2•—)+4)•———————)•—————)•—————
3 2 7 7
Step 8 :
Rewriting the whole as an Equivalent Fraction :
8.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 3 as the denominator :
4 4 • 3
4 = — = —————
1 3
Adding fractions that have a common denominator :
8.2 Adding up the two equivalent fractions
2x + 4 • 3 2x + 12
—————————— = ———————
3 3
Equation at the end of step 8 :
(2x + 12) (3x + 12) (x + 7) (x - 7)
((————————— • —————————) • ———————) • ———————
3 2 7 7
Step 9 :
Step 10 :
Pulling out like terms :
10.1 Pull out like factors :
2x + 12 = 2 • (x + 6)
Step 11 :
Pulling out like terms :
11.1 Pull out like factors :
(3x + 12) = 3 • (x + 4)
Equation at the end of step 11 :
(x + 7) (x - 7)
((x + 6) • (x + 4) • ———————) • ———————
7 7
Step 12 :
Equation at the end of step 12 :
(x + 6) • (x + 4) • (x + 7) (x - 7)
————————— • ———————
7 7
Step 13 :
Final result :
(x + 6) • (x + 4) • (x + 7) • (x - 7) ————————————————————————————————————— 49
Final result :
(x + 6) • (x + 4) • (x + 7) • (x - 7)
—————————————————————————————————————
49
Step by step solution :
Step 1 :
1
Simplify —
7
Equation at the end of step 1 :
x x 1 1
((((2•—)+4)•((3•—)+6))•((—•x)+1))•((—•x)-1)
3 2 7 7
Step 2 :
Rewriting the whole as an Equivalent Fraction :
2.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using 7 as the denominator :
1 1 • 7
1 = — = —————
1 7
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
2.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x - (7) x - 7
——————— = —————
7 7
Equation at the end of step 2 :
x x 1 (x-7)
((((2•—)+4)•((3•—)+6))•((—•x)+1))•—————
3 2 7 7
Step 3 :
1
Simplify —
7
Equation at the end of step 3 :
x x 1 (x-7)
((((2•—)+4)•((3•—)+6))•((—•x)+1))•—————
3 2 7 7
Step 4 :
Rewriting the whole as an Equivalent Fraction :
4.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 7 as the denominator :
1 1 • 7
1 = — = —————
1 7
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
x + 7 x + 7
————— = —————
7 7
Equation at the end of step 4 :
x x (x+7) (x-7)
((((2•—)+4)•((3•—)+6))•—————)•—————
3 2 7 7
Step 5 :
x
Simplify —
2
Equation at the end of step 5 :
x x (x+7) (x-7)
((((2•—)+4)•((3•—)+6))•—————)•—————
3 2 7 7
Step 6 :
Rewriting the whole as an Equivalent Fraction :
6.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 2 as the denominator :
6 6 • 2
6 = — = —————
1 2
Adding fractions that have a common denominator :
6.2 Adding up the two equivalent fractions
3x + 6 • 2 3x + 12
—————————— = ———————
2 2
Equation at the end of step 6 :
x (3x+12) (x+7) (x-7)
((((2•—)+4)•———————)•—————)•—————
3 2 7 7
Step 7 :
x
Simplify —
3
Equation at the end of step 7 :
x (3x+12) (x+7) (x-7)
((((2•—)+4)•———————)•—————)•—————
3 2 7 7
Step 8 :
Rewriting the whole as an Equivalent Fraction :
8.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 3 as the denominator :
4 4 • 3
4 = — = —————
1 3
Adding fractions that have a common denominator :
8.2 Adding up the two equivalent fractions
2x + 4 • 3 2x + 12
—————————— = ———————
3 3
Equation at the end of step 8 :
(2x + 12) (3x + 12) (x + 7) (x - 7)
((————————— • —————————) • ———————) • ———————
3 2 7 7
Step 9 :
Step 10 :
Pulling out like terms :
10.1 Pull out like factors :
2x + 12 = 2 • (x + 6)
Step 11 :
Pulling out like terms :
11.1 Pull out like factors :
(3x + 12) = 3 • (x + 4)
Equation at the end of step 11 :
(x + 7) (x - 7)
((x + 6) • (x + 4) • ———————) • ———————
7 7
Step 12 :
Equation at the end of step 12 :
(x + 6) • (x + 4) • (x + 7) (x - 7)
————————— • ———————
7 7
Step 13 :
Final result :
(x + 6) • (x + 4) • (x + 7) • (x - 7) ————————————————————————————————————— 49
pratyasha9187:
hope it helps
Answered by
0
Heyy Friend ✌
Here is u r Ans ➡
☄☄☄☄☄☄☄☄☄☄☄☄☄☄
Hope This Helps u ☺.
Here is u r Ans ➡
☄☄☄☄☄☄☄☄☄☄☄☄☄☄
Hope This Helps u ☺.
Similar questions