Math, asked by Nityayadav9996, 7 months ago

Simplify ÷
1. 13+5+[100÷10+{15×2(13-9÷4-1) }]

Answers

Answered by aakash8458
0

Step-by-step explanation:

EVALUATE

Solution Steps

13+5+(100 \div 10+(15 \times 2(13-9 \div 4-1)))

13+5+(100÷10+(15×2(13−9÷4−1)))

view step

13518

18+\frac{100}{10}+15\times 2\left(13-\frac{9}{4}-1\right)=320.5

18+

10

100

+15×2(13−

4

9

−1)=320.5

view step

1001010

18+10+15\times 2\left(13-\frac{9}{4}-1\right)=320.5

18+10+15×2(13−

4

9

−1)=320.5

view step

181028

28+15\times 2\left(13-\frac{9}{4}-1\right)=320.5

28+15×2(13−

4

9

−1)=320.5

view step

15230

28+30\left(13-\frac{9}{4}-1\right)=320.5

28+30(13−

4

9

−1)=320.5

view step

13\frac{52}{4}=13

28+30\left(\frac{52}{4}-\frac{9}{4}-1\right)=320.5

28+30(

4

52

4

9

−1)=320.5

view step

\frac{52}{4}=13

\frac{9}{4}=2.25

28+30\left(\frac{52-9}{4}-1\right)=320.5

28+30(

4

52−9

−1)=320.5

view step

95243

28+30\left(\frac{43}{4}-1\right)=320.5

28+30(

4

43

−1)=320.5

view step

1\frac{4}{4}=1

28+30\left(\frac{43}{4}-\frac{4}{4}\right)=320.5

28+30(

4

43

4

4

)=320.5

view step

\frac{43}{4}=10.75

\frac{4}{4}=1

28+30\times \left(\frac{43-4}{4}\right)=320.5

28+30×(

4

43−4

)=320.5

view step

44339

28+30\times \left(\frac{39}{4}\right)=320.5

28+30×(

4

39

)=320.5

view step

30\times \left(\frac{39}{4}\right)=292.5

28+\frac{30\times 39}{4}=320.5

28+

4

30×39

=320.5

view step

30391170

28+\frac{1170}{4}=320.5

28+

4

1170

=320.5

view step

\frac{1170}{4}=292.5

2

28+\frac{585}{2}=320.5

28+

2

585

=320.5

view step

28\frac{56}{2}=28

\frac{56}{2}+\frac{585}{2}=320.5

2

56

+

2

585

=320.5

view step

\frac{56}{2}=28

\frac{585}{2}=292.5

\frac{56+585}{2}=320.5

2

56+585

=320.5

view step

56585641

\frac{641}{2}=320.5

2

641

=320.5

is true

Next step

2

641

=320.5

Answered by hallujune
1

Answer:

67

Step-by-step explanation:

13+5+[100÷10+{15×2(13-9÷4-1)}]

13+5+[100÷10+{15×2(4÷3)}]

13+5+[100÷10+{15×2×1.3}]

13+5+[100÷10+39]

13+5+[10+39]

13+5+49

67

Please mark as Brainliest....

Similar questions