Math, asked by mohammedimranfaiz205, 7 months ago

simplify 1/√2+1+1/√3+√2+1/√4+√3​

Answers

Answered by nagendrachauhan2001
0

Answer:

=\sqrt{4}-1 ans

Step-by-step explanation:

the question is \frac{1}{\sqrt{2}+1 } +\frac{1}{\sqrt{3}+\sqrt{2}  } +\frac{1}{\sqrt{4}+\sqrt{3}  }

first step :- change sign of denominator after that multiply and divide

so it will be \frac{1}{\sqrt{2}+1 } . \frac{\sqrt{2}-1}{\sqrt{2}-1 } +\frac{1}{\sqrt{3}+\sqrt{2}  }. \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2} } +\frac{1}{\sqrt{4}+\sqrt{3}  }.\frac{\sqrt{4}-\sqrt{3} }{\sqrt{4}-\sqrt{3}  }

we use formula (a+b)(a-b) = a^{2}-b^{2}

so it will be \frac{\sqrt{2}-1}{(\sqrt{2})^{2} -1 } +\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^{2} -(\sqrt{2})^{2} } +\frac{\sqrt{4}-\sqrt{3} }{(\sqrt{4})^{2} -(\sqrt{3})^{2}   }

now simplify above equation

=\frac{\sqrt{2}-1}{2 -1 } +\frac{\sqrt{3}-\sqrt{2}}{{3-2} } +\frac{\sqrt{4}-\sqrt{3} }{4-3}

=\sqrt{2}-1} +\sqrt{3}-\sqrt{2}} +\sqrt{4}-\sqrt{3} }

=-1}  +\sqrt{4}

=\sqrt{4}-1 ans

for more math questions search #underroottssc on youtube

have a great day (:

Similar questions