Math, asked by ananyanaskar28, 4 days ago

Simplify : [( 1/ 2 ) ^−3 + ( 1 /3 )^ −3 + ( −2)^ 3 ] ÷ ( 1/ 3 ) ^−2


full explanation...no wrong answers​

Answers

Answered by Anonymous
14

Answer:

Question :

Simplify :

{\implies{\rm{\pink{\Bigg[\bigg(  \dfrac{1}{2} \bigg)^{ - 3}   + \bigg( \dfrac{1}{3} \bigg)^{ - 3}  + ( - 2)^{3} \Bigg] \div  \bigg( \dfrac{1}{3} \bigg)^{ - 2}}}}}

\begin{gathered}\end{gathered}

Solution :

Using law of exponent rules to solve this question :

\star \: \small\boxed{ \frac{a}{b}^{m}  =  \dfrac{a^m}{b^m}}

\star \: \small\boxed{ {a}^{ - n} =  \dfrac{1}{a}^{n}}

━━━━━━━━━━━━━━━━━━━

Now, by using this law of exponents, simplifying the given question :

{\implies{\rm{\purple{\Bigg[\bigg(  \dfrac{1}{2} \bigg)^{ - 3}   + \bigg( \dfrac{1}{3} \bigg)^{ - 3}  + ( - 2)^{3} \Bigg] \div  \bigg( \dfrac{1}{3} \bigg)^{ - 2}}}}}

{\implies{\rm{\purple{\Bigg[\bigg(  \dfrac{1^{ - 3} }{2^{ - 3} } \bigg)   + \bigg( \dfrac{1^{ - 3} }{3^{ - 3} } \bigg)  + ( - 2)^{3} \Bigg] \div  \bigg( \dfrac{1^{ - 2} }{3^{ - 2} } \bigg)}}}}

As we know that the (1 to the power of any number is 1). So,

{\implies{\rm{\purple{\Bigg[\bigg(  \dfrac{1}{2^{ - 3} } \bigg)   + \bigg( \dfrac{1}{3^{ - 3} } \bigg)  + ( - 2)^{3} \Bigg] \div  \bigg( \dfrac{1}{3^{ - 2} } \bigg)}}}}

{\implies{\rm{\purple{\Bigg[(2)^{3}    + (3)^{3}   + ( - 2)^{3} \Bigg] \div (3)^{2} }}}}

{\implies{\rm{\purple{\Bigg[(2 \times 2 \times 2)    + (3 \times 3 \times 3)  + ( - 2 \times  - 2 \times  - 2)\Bigg] \div (3 \times 3) }}}}

{\implies{\rm{\purple{\Bigg[(8)    + (27)  + ( - 8)\Bigg] \div (9)}}}}

Now, we know that [(+)(-) = (-)]. Then,

{\implies{\rm{\purple{\Bigg[(8 + 27- 8)\Bigg] \div (9)}}}}

{\implies{\rm{\purple{\Bigg[(35- 8)\Bigg] \div (9)}}}}

Opening square bracket to continuously doing the question :

{\implies{\rm{\purple{27 \div 9}}}}

{\implies{\rm{\purple{ \dfrac{27}{9} }}}}

Cutting the fraction into simplest form to give right answer.

{\implies{\rm{\purple{ \cancel{\dfrac{27}{9} }}}}}

{\implies{\rm{\purple{3}\qquad \big( Ans \big) }}}

Hence, the answer is 3.

\begin{gathered}\end{gathered}

Learn More :

☼ EXPONENT :

↝ The exponent of a number says how many times to use the number in a multiplication.

☼ LAW OF EXPONENT :

The important laws of exponents are given below:

  • ➠ {\rm{{a}^{m} \times {a}^{n} = {a}^{m + n}}}
  • ➠ {\rm{{a}^{m}/{a}^{n} = {a}^{m - n}}}
  • ➠ {\rm{({a}^{m})^{n} = {a}^{mn}}}
  • ➠ {\rm{{a}^{n}/{b}^{n} = ({a/b})^{n} }}
  • ➠ {\rm{{a}^{0} = 1}}
  • ➠ {\rm{{a}^{ - m} = {1/a}^{m}}}
  • ➠ {\rm{{a}^{\frac{1}{n} } = \sqrt[n]{a}}}

☼ Algebraic identities :

  • ➛ (a+b)²+(a-b)² = 2a²+2b²
  • ➛ (a+b)²-(a-b)² = 4ab
  • ➛ (a+b)(a -b) = a²-b²
  • ➛ (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
  • ➛ (a-b)³ = a³-b³-3ab(a-b)
  • ➛ (a³+b³) = (a+b)(a²-ab+b²)
  • ➛ a²+b² = (a+b)²-2ab
  • ➛ a³-b³ = (a-b)(a²+ab +b²)
  • ➛ If a + b + c = 0 then a³ + b³ + c³ = 3abc

☼ BODMAS :

↝ BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

  • »» B - Brackets,
  • »» O - Order of powers or roots,
  • »» D - Division,
  • »» M - Multiplication 
  • »» A - Addition
  • »» S - Subtraction.

↝ It means that expressions having multiple operators need to be simplified from left to right in this order only.

☼ BODMAS RULE :

↝ First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

  • ↠ Addition (+)
  • ↠ Subtraction (-)
  • ↠ Multiplication (×)
  • ↠ Division (÷)
  • ↠ Brackets ( )

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions