Math, asked by dasjunupehoye, 11 months ago

Simplify 1/( 2+√3) + 2/(√5- √3) + 1/(2-√5)

Answers

Answered by A1111
4

Answer:

0

Step-by-step explanation:

Rationalising each term, we get :-

 \frac{1}{2 +  \sqrt{3} }  = 2 -  \sqrt{3}   \:  \:  \:  \:  \:  \: (multiplying \: numerator \: and \: denominator \: by \: 2 -  \sqrt{3} )

 \frac{2}{ \sqrt{5} -  \sqrt{3}  }  =    \sqrt{5}  +  \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  (multiplying \: numerator \: and \: denominator \: by \: \sqrt{5}  +  \sqrt{3} )

 \frac{1}{2 -  \sqrt{5} }  =  - 2 -  \sqrt{5}  \:  \:  \:  \:  \:  \: (multiplying \: numerator \: and \: denominator \: by \:2 +  \sqrt{5} )

Thus, the given expression will become,

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  +  \frac{1}{2 -  \sqrt{5} }  = 2 -  \sqrt{3}  +  \sqrt{5}  +  \sqrt{3}  - 2 -  \sqrt{5}  = 0

Hope it'll help you.....

Similar questions