simplify 1/2+√3+2/√5+√3+1/2+√5
Answers
Concept
Rationalisation in elementary algebra is used to eliminate the irrational number present in the denominator.
Find
Simplify 1/(2+√3) + 2/(√5-√3) + 1/(2+√5)
Solution
1/(2+√3) + 2/(√5-√3) + 1/(2+√5)
Let us consider
1/(2+√3) ............(1)
2/(√5-√3) ............(2)
1/(2+√5) ............(3)
(1)+(2)+(3) = solution
Solving Part (1)
1/(2+√3)
Rationalising
1/(2+√3) * (2-√3)/(2-√3)
[1*(2-√3)]/ [(2+√3) * (2-√3)]
(2-√3) / [(2)² - (√3)²]
(2-√3) /(4-3)
= 2-√3
Solving Part 2
2/(√5-√3)
Rationalising
2/(√5-√3) * (√5+√3)/(√5+√3)
[2 * (√5+√3) ] / [(√5-√3) * (√5+√3)]
2 (√5+√3) / [(√5)² - (√3)²]
2 (√5+√3) / (5 - 3)
2 (√5+√3) / 2
= √5+√3
Solving Part 3
1/(2+√5)
Rationalising
1/(2+√5) * (2-√5)/(2-√5)
[1*(2-√5)] / [(2+√5)*(2-√5)]
(2-√5) / [(2)² - (√5)²]
(2-√5)/(4-5)
2-√5/(-1)
= √5 -2
Adding (1), (2), (3)
= 2- √3 + √5 +√3 +√5 -2
= 2√5
1/(2+√3) + 2/(√5-√3) + 1/(2+√5) = 2√5
#SPJ2