Math, asked by Angel338, 1 year ago

Simplify 1+√2÷√5+√3+1-√2÷√5-√3

Answers

Answered by Shivmastaer
8

Answer:

Step-by-step explanation:

1+(√2/√5)+√3+1-(√2/√3)-√3

1+1+(√2/√5)-(√2/√3)

2/1+√2/√5-√2/√3

Take LCM of √5,√3 and 1

It's √15

(2√15+√6-√10)/√15

HOPE IT HELPS...

PLS MARK AS BRAINLIEST

Answered by pinquancaro
37

\frac{1+\sqrt2}{\sqrt5+\sqrt3}+\frac{1-\sqrt2}{\sqrt5-\sqrt3}=\sqrt{5}-\sqrt{6}

Step-by-step explanation:

Given : Expression \frac{1+\sqrt2}{\sqrt5+\sqrt3}+\frac{1-\sqrt2}{\sqrt5-\sqrt3}

To find : Simplify the expression ?

Solution :

\frac{1+\sqrt2}{\sqrt5+\sqrt3}+\frac{1-\sqrt2}{\sqrt5-\sqrt3}

Taking Least common denominator,

=\frac{(1+\sqrt2)(\sqrt5-\sqrt3)+(1-\sqrt2)(\sqrt5+\sqrt3)}{(\sqrt5+\sqrt3)(\sqrt5-\sqrt3)}

=\frac{\sqrt{5}-\sqrt3+\sqrt{10}-\sqrt{6}+\sqrt5+\sqrt3-\sqrt{10}-\sqrt{6}}{(\sqrt5)^2-(\sqrt3)^2}

=\frac{2\sqrt{5}-2\sqrt{6}}{5-3}

=\frac{2(\sqrt{5}-\sqrt{6})}{2}

=\sqrt{5}-\sqrt{6}

Therefore, \frac{1+\sqrt2}{\sqrt5+\sqrt3}+\frac{1-\sqrt2}{\sqrt5-\sqrt3}=\sqrt{5}-\sqrt{6}

#Learn more

Simplify =1/√5+√3 + 1/2(√5-√3)

https://brainly.in/question/3603200

Similar questions