Math, asked by rockstar619, 9 months ago

simplify 1/√3+√2-1/√2-√3​

Answers

Answered by BrainlyPopularman
6

GIVEN :

 \\  = { \bold{ \dfrac{1}{ \sqrt{3}  +  \sqrt{2} } -  \dfrac{1}{ \sqrt{2} -  \sqrt{3}}}} \\

TO FIND :

Simplified form = ?

SOLUTION :

• Let the function –

 \\ \implies  { \bold{x =  \dfrac{1}{ \sqrt{3}  +  \sqrt{2} } -  \dfrac{1}{ \sqrt{2} -  \sqrt{3}}}} \\

• Rationalization of denominator –

 \\ \implies  { \bold{x =  \dfrac{1}{ \sqrt{3}  +  \sqrt{2}} \times  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  -  \left  \{\dfrac{1}{ \sqrt{2} -  \sqrt{3}} \times  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{ \sqrt{2}  + \sqrt{3} } \right \} }} \\

 \\ \implies  { \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ (\sqrt{3}  +  \sqrt{2})(\sqrt{3}  -  \sqrt{2}) }  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{( \sqrt{2} -  \sqrt{3})( \sqrt{2}   +   \sqrt{3}) } \right \} }} \\

• Now Using –

 \\ \:  \:  \blacktriangleright  \:  \:  \large { \boxed{ \bold{(a + b)(a - b) =  {a}^{2} -  {b}^{2} }}} \\

• So that –

 \\ \implies  { \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ (\sqrt{3})^{2}   - ( \sqrt{2})^{2}  }  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{( \sqrt{2} )^{2} - ( \sqrt{3})^{2}} \right \} }} \\

 \\ \implies  { \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{ 3 - 2}  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{2 - 3} \right \} }} \\

 \\ \implies  { \bold{x =  \dfrac{ \sqrt{3}  -  \sqrt{2} }{1}  -  \left  \{  \dfrac{ \sqrt{2}  +  \sqrt{3}  }{ - 1} \right \} }} \\

 \\ \implies  { \bold{x =  { \sqrt{3}  -  \sqrt{2} }   +  { \sqrt{2}  +  \sqrt{3} }}} \\

 \\ \implies \large{ \boxed { \bold{x =  2 \sqrt{3}}}} \\

Answered by Anonymous
0

Answer:

I hope answer is helpful to us

Attachments:
Similar questions