Math, asked by rishav61, 1 year ago

simplify 1/√3+√2-2/√5-√3-√3/√2-√5

Answers

Answered by DaIncredible
4
Hey friend,
Here is the answer you were looking for:
 \frac{1}{ \sqrt{3} +  \sqrt{2}  }  -  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  -  \frac{ \sqrt{3} }{ \sqrt{2}  -  \sqrt{5} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  -  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  -  \frac{ \sqrt{3} }{ \sqrt{2}  -  \sqrt{5} }  \times  \frac{ \sqrt{2}  +   \sqrt{5}  }{ \sqrt{2}  +  \sqrt{5} }  \\  \\  using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ \sqrt{3}  -  \sqrt{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }  -  \frac{2 \times  \sqrt{5}  + 2 \times  \sqrt{3} }{ {( \sqrt{5} )}^{2} -  {( \sqrt{3} )}^{2}  }  -  \frac{ \sqrt{3}  \times  \sqrt{2}  +  \sqrt{3}  \times  \sqrt{5} }{ {( \sqrt{2} )}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\  =  \frac{ \sqrt{3} -  \sqrt{2}  }{3 - 2}  -  \frac{2 \sqrt{5} + 2 \sqrt{3}  }{5 - 3}  -  \frac{ \sqrt{6}  +  \sqrt{15} }{2 - 5}  \\  \\  =  \sqrt{3}  -  \sqrt{2}  -  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{2}  -  \frac{ \sqrt{6} +  \sqrt{15}  }{ - 3}  \\  \\  =  \sqrt{3}  -  \sqrt{2}  -  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{2}  -  \frac{ -  \sqrt{6}  -  \sqrt{15} }{3}  \\  \\  =  \frac{ \sqrt{3}  \times 6 -  \sqrt{2}  \times 6 - 2 \sqrt{5}  \times 3 - 2 \sqrt{3}  \times 3 +  \sqrt{6}  \times 2  +  \sqrt{15}  \times 2}{6}  \\  \\  =  \frac{6 \sqrt{3}  - 3 \sqrt{2}  - 6 \sqrt{5}  - 6 \sqrt{3}  + 2 \sqrt{6} + 2 \sqrt{15}  }{6}  \\  \\  =  \frac{ - 3 \sqrt{2}  - 6 \sqrt{5}  + 2 \sqrt{6} + 2 \sqrt{15}  }{6}

Hope this helps!!!!

@Mahak24

Thanks...
☺☺

rishav61: answer is 2√2
DaIncredible: hey I can ask some others to check this answer.... wait
rishav61: okh
DaIncredible: :)
DaIncredible: he/she will answer in some time... And if my answer is wrong then it will be deleted in sometime
rishav61: ohk
Similar questions