Math, asked by mnageswarraodop7d9j0, 1 year ago

simplify =1/√5+√3 + 1/2(√5-√3)

Answers

Answered by DaIncredible
50
Hey friend,
Here is the answer you were looking for:
 \frac{1}{ \sqrt{5}  +  \sqrt{3} }  +  \frac{1}{2( \sqrt{5} -  \sqrt{3} ) }  \\  \\  =  \frac{1}{ \sqrt{5} +  \sqrt{3}  }  +  \frac{1}{2 \sqrt{5}  - 2 \sqrt{3} }  \\

On rationalizing the denominator we get,

 =  \frac{1}{ \sqrt{5} +  \sqrt{3}  }  \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 \sqrt{5}  - 2 \sqrt{3} }  \times  \frac{2 \sqrt{5} + 2 \sqrt{3}  }{2 \sqrt{5}  + 2 \sqrt{3} }

Using the identity :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =  \frac{ \sqrt{5}  -  \sqrt{3} }{ {( \sqrt{5} )}^{2} -  {( \sqrt{3} )}^{2}  }  -  \frac{2 \sqrt{5} + 2 \sqrt{3}  }{ {(2 \sqrt{5} })^{2} -  {(2 \sqrt{3} )}^{2}  }  \\  \\  =  \frac{ \sqrt{5}  -  \sqrt{3} }{5 - 3}  -  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{20 - 12}  \\  \\  =  \frac{ \sqrt{5}  -  \sqrt{3} }{2}  -  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{8}  \\  \\  =  \frac{ \sqrt{5} -  \sqrt{3}  }{2}  -  \frac{ \sqrt{5}  +  \sqrt{3} }{4}  \\  \\  =  \frac{ \sqrt{5}  \times 2 -  \sqrt{3}  \times 2 - ( \sqrt{5} +  \sqrt{3}  )}{4}  \\  \\  =  \frac{2 \sqrt{5} - 2 \sqrt{3}  -  \sqrt{5} -  \sqrt{3}   }{4}  \\  \\  =  \frac{ \sqrt{5}  - 3 \sqrt{3} }{4}

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Answered by Shivmastaer
11

Linked in image

It's really a short method

HOPE it helps

Attachments:
Similar questions