Math, asked by chakrabortysohini581, 6 months ago

Simplify : (1/5x + 2y) x (2/3x - y)​

Answers

Answered by taniyaanshi81
1

Answer:

(

5

1

x+2y)(

3

2

x−y)

=(

5

1

x+

1×5

2×5

y)(

3

2

x−

1×3

1×3

y)(TakingLCM)

=(

5

1

x+

5

10

y)(

3

2

x−

3

3

y)

=(

5

x+10y

)(

3

2x−3y

)

=

15

1

(x+10y)(2x−3y)

=

15

1

(2x

2

−3xy+20xy−30y

2

)

=

15

2x

2

−30y

2

+17xy

Hence, (

5

1

x+2y)(

3

2

x−y)=

15

2x

2

−30y

2

+17xy

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\textbf{\textsf{\orange{Solution:}}}}

Simplify :

 \:   \bullet \bf{ \bigg( \frac{1}{5}x + 2y \bigg) \times  \bigg( \frac{2}{3} x - y \bigg)}

 \:  \implies \displaystyle \sf{ \bigg( \frac{x}{5}  + 2y \bigg) \bigg( \frac{2x}{3}  - y \bigg)}

 \:  \\  \implies \displaystyle \sf{ \bigg( \frac{x}{5}  \bigg( \frac{2x}{3}  - y \bigg) + 2y \bigg (\frac{2x}{3}  - y \bigg)} \bigg)

 \:  \implies \displaystyle \sf \bigg( \frac{2 {x}^{2} }{15}  -  \frac{xy}{5}  +  \frac{4xy}{3}  - 2 {y}^{2}  \bigg)

 \:  \\  \implies \displaystyle \sf \:  \bigg( \frac{2 {x}^{2} }{15}  -  \frac{3xy + 20xy}{15}  - 2 {y}^{2}  \bigg)

 \:  \implies \displaystyle \sf \bigg( \frac{2 {x}^{2} }{15}   + \frac{ 17xy}{15}  - 2 {y}^{2}  \bigg)

 \:  \implies \displaystyle \sf \:  \bigg( 2 {x}^{2}   + 17xy - 30 {y}^{2}  \bigg)

Similar questions