Math, asked by kazijinan778, 13 hours ago

Simplify - 1)7x^2+18x+18/49x^2-16 x 14x-8/x+2

2)z^3 -9y^2 / z^3 -27^3​

Answers

Answered by vighneshmittapelli8
1

STEP 1

:

           14x - 8

Simplify   ———————

            x + 2  

STEP

2

:

Pulling out like terms

2.1     Pull out like factors :

  14x - 8  =   2 • (7x - 4)  

Equation at the end of step

2

:

 (((7•(x2))+18x)+8) 2•(7x-4)

 ——————————————————•————————

   ((49•(x2))-16)     x+2    

STEP  

3

:

Equation at the end of step

3

:

 (((7•(x2))+18x)+8) 2•(7x-4)

 ——————————————————•————————

     (72x2-16)        x+2    

STEP  

4

:

Equation at the end of step

4

:

 ((7x2+18x)+8) 2•(7x-4)

 —————————————•————————

   (49x2-16)     x+2    

STEP

5

:

           7x2 + 18x + 8

Simplify   —————————————

             49x2 - 16  

Trying to factor by splitting the middle term

5.1     Factoring  7x2 + 18x + 8  

The first term is,  7x2  its coefficient is  7 .

The middle term is,  +18x  its coefficient is  18 .

The last term, "the constant", is  +8  

Step-1 : Multiply the coefficient of the first term by the constant   7 • 8 = 56  

Step-2 : Find two factors of  56  whose sum equals the coefficient of the middle term, which is   18 .

     -56    +    -1    =    -57  

     -28    +    -2    =    -30  

     -14    +    -4    =    -18  

     -8    +    -7    =    -15  

     -7    +    -8    =    -15  

     -4    +    -14    =    -18  

     -2    +    -28    =    -30  

     -1    +    -56    =    -57  

     1    +    56    =    57  

     2    +    28    =    30  

     4    +    14    =    18    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  4  and  14  

                    7x2 + 4x + 14x + 8

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (7x+4)

             Add up the last 2 terms, pulling out common factors :

                   2 • (7x+4)

Step-5 : Add up the four terms of step 4 :

                   (x+2)  •  (7x+4)

            Which is the desired factorization

Trying to factor as a Difference of Squares:

5.2      Factoring:  49x2-16  

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  49  is the square of  7  

Check : 16 is the square of 4

Check :  x2  is the square of  x1  

Factorization is :       (7x + 4)  •  (7x - 4)  

Canceling Out :

5.3    Cancel out  (7x + 4)  which appears on both sides of the fraction line.

Equation at the end of step

5

:

 (x + 2)   2 • (7x - 4)

 ——————— • ————————————

 7x - 4       x + 2    

STEP

6

:

Canceling Out

6.1    Cancel out  (x+2)  which appears on both sides of the fraction line.

Canceling Out :

6.2    Cancel out  (7x-4)  which appears on both sides of the fraction line.

Final result :

 2

Similar questions