Math, asked by sasmita123, 7 months ago

Simplify: (1/9)-½×(64)-⅓​

Answers

Answered by rajivdani20p3mkqi
2

Answer:

12 \sqrt[3]{4}

Step-by-step explanation:

 { \frac{1}{9} }^{ -  \frac  {1}{2} } \:  \times  {64}^{ -  \frac{1}{3} }   \\  = )  { 9 }^{ \frac{1}{2} }  \times   { \frac{1}{64} }^{ \frac{1}{3} }   \\  = ) \sqrt{9 }  \times  \sqrt[3]{64}  \\  = ) \: 3 \times 4 \sqrt[3]{4 }  \\  = ) 12\sqrt[3]{4}

Hope it helps.......

Mark it brainliest.......

Thank you......

Answered by Anonymous
4

Given:-

\implies \tt \dfrac{1}{9}^{-\dfrac{1}{2}} \times (64)^{-\dfrac{1}{3}}

Solution:-

\implies \tt \bigg(\dfrac{1}{9}\bigg)^{-\dfrac{1}{2}} \times (64)^{-\dfrac{1}{3}}

 \implies \tt \bigg(\dfrac{1}{3}\bigg)^{2}\times^{(\dfrac{-1}{2})} \times(4)^{3}\times^{(\dfrac{-1}{3})} \\ \\ \\ \implies \tt \bigg(\dfrac{1}{3}\bigg)^{-1} \times (4)^{-1} \\ \\ \\ \implies \tt 3 \times \dfrac{1}{4} \\ \\ \\ \implies \tt \dfrac{3}{4}

Note:-

  • \dfrac{1}{9} can be written as \bigg(\dfrac{1}{3}\bigg)^{2}
  • 64 can be written as (4)³.
  • From this note no confusion arises.

Answer:-

\large {\boxed {\boxed {\sf{\red  {\dfrac{3}{4} }}}}}

☃️ Finally we did it!!

Similar questions