Math, asked by anusha318, 11 months ago

Simplify (1 - cos theeta ) ( 1 + cos theeta ) ( 1 + cot² theeta​

Answers

Answered by Anjula
13

Answer :-

Consider,

(1 - cosø) (1+cosø) (1+ cot²ø)

(a-b)(a+b) = a²-b²

=> ( 1 - cos²ø) ( 1+cos²ø)

=> (sin²ø)(cosec²ø)

=> sin²ø - 1/sin²ø

Cancelling sin²ø ,

=> 1

Answered by AbhijithPrakash
17

Answer:

\left(1-\cos \left(\theta\right)\right)\left(1+\cos \left(\theta\right)\right)\left(1+\cot ^2\left(\theta\right)\right)=1

Step-by-step explanation:

\left(1-\cos \left(\theta\right)\right)\left(1+\cos \left(\theta\right)\right)\left(1+\cot ^2\left(\theta\right)\right)

\gray{\mathrm{Use\:the\:following\:identity}:\quad \:-\cot ^2\left(x\right)+\csc ^2\left(x\right)=1}

\gray{\mathrm{Therefore\:}1+\cot ^2\left(x\right)=\csc ^2\left(x\right)}

=\left(1+\cos \left(\theta\right)\right)\csc ^2\left(\theta\right)\left(1-\cos \left(\theta\right)\right)

\gray{\mathrm{Expand}\:\left(1-\cos \left(x\right)\right)\left(1+\cos \left(x\right)\right)=1-\cos ^2\left(x\right)}

\gray{\mathrm{Use\:the\:following\:identity:}\:1-\cos ^2\left(x\right)=\sin ^2\left(x\right)}

=\csc ^2\left(\theta\right)\sin ^2\left(\theta\right)

\gray{\mathrm{Use\:the\:following\:identity}:\quad \csc \left(x\right)=\dfrac{1}{\sin \left(x\right)}}

=\left(\dfrac{1}{\sin \left(\theta\right)}\right)^2\sin ^2\left(\theta\right)

\gray{\left(\dfrac{1}{\sin \left(\theta\right)}\right)^2=\dfrac{1}{\sin ^2\left(\theta\right)}}

=\dfrac{1}{\sin ^2\left(\theta\right)}\sin ^2\left(\theta\right)

\gray{\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}}

=\dfrac{\sin ^2\left(\theta\right)}{\sin ^2\left(\theta\right)}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:\sin ^2\left(\theta\right)}

=1

Similar questions