Math, asked by dineshmali190yf, 1 month ago

simplify 1-cos²theta/sin²( 90-theta)



pls slove it's hard for !me ​

Answers

Answered by varadad25
3

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{1\:-\:\cos^2\:\theta}{\sin^2\:(\:90\:-\:\theta\:)}\:=\:\tan^2\:\theta}}}

Step-by-step-explanation:

We have to simplify a trigonometric expression.

The given trigonometric expression is

\displaystyle{\sf\:\dfrac{1\:-\:\cos^2\:\theta}{\sin^2\:(\:90\:-\:\theta\:)}}

Now, we know that,

\displaystyle{\pink{\sf\:\sin^2\:\theta\:+\:\cos^2\:\theta\:=\:1}}

\displaystyle{\implies\sf\:1\:-\:\cos^2\:\theta\:=\:\sin^2\:\theta}

Now,

\displaystyle{\pink{\sf\:\sin\:(\:90\:-\:\theta\:)\:=\:\cos\:\theta}}

\displaystyle{\implies\sf\:\sin^2\:(\:90\:-\:\theta\:)\:=\:\cos^2\:\theta}

Now, by substituting these values in the given expression, we get,

\displaystyle{\sf\:\dfrac{1\:-\:\cos^2\:\theta}{\sin^2\:(\:90\:-\:\theta\:)}}

\displaystyle{\implies\sf\:\dfrac{\sin^2\:\theta}{\cos^2\:\theta}}

\displaystyle{\implies\sf\:\left(\:\dfrac{\sin\:\theta}{\cos\:\theta}\:\right)^2}

\displaystyle{\implies\sf\:(\:\tan\:\theta\:)^2}

\displaystyle{\implies\sf\:\tan^2\:\theta}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\dfrac{1\:-\:\cos^2\:\theta}{\sin^2\:(\:90\:-\:\theta\:)}\:=\:\tan^2\:\theta}}}}

Answered by TrustedAnswerer19
60

Answer:

 \sf \green {\boxed{   \bf \:  \:  \frac{1 -  {cos}^{2} \theta }{ {sin}^{2} (90 - \theta) }  =  {tan}^{2}  \theta \:  \: }} \:

Given,

 \sf \:   \frac{1 -  {cos}^{2} \theta }{ {sin}^{2}(90 -   \theta)}

We have to simplify this.

But, at first we have to know somethngs ! :

  \pink{ \sf{sin}^{2} \theta }  + {cos}^{2} \theta  = 1 \\   \pink{\sf \therefore \:   {sin}^{2}  \theta }= 1 -  {cos}^{2}  \theta

And

 \odot \: \orange { \sf \: sin(90 -  \theta)} = \blue{cos \theta }\\   \\   \sf\odot \: tan  \theta =  \frac{sin \theta}{cos \theta}  \\  \\  \odot \: \sf \:   ({sin \theta})^{2}  =  {sin}^{2}  \theta \:

Solution :

 \sf \:  \frac{1 -  {cos}^{2}  \theta}{ {sin}^{2}(90 - \theta)  }  \\  \\  =  \sf \:   \frac{ \pink{ {sin}^{2} \theta} }{ { \{ \orange{sin(90 -  \theta)}} \}^{2} }  \\  \\  \sf =  \frac{  \pink{{sin}^{2} \theta }}{ {( \blue{cos \theta}})^{2} }  \\  \\  \sf =  \frac{ \pink{ {sin}^{2}  \theta}}{ \blue {{cos}^{2} \theta} }  \\  \\   = \sf \purple{ {tan}^{2}  \theta}

So,

 \sf \green {\boxed{   \bf \:  \:  \frac{1 -  {cos}^{2} \theta }{ {sin}^{2} (90 - \theta) }  =  {tan}^{2}  \theta \:  \: }}

Similar questions