Math, asked by nirunirupama10, 10 months ago

simplify 1 divided by 1 + x power b minus a + x power c minus a + 1 / 1 + x power a minus b + x power c minus b + 1 / 1 + x power a minus c plus x power b minus c

Answers

Answered by pulakmath007
51

SOLUTION

TO SIMPLIFY

 \displaystyle \sf{  \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  + \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{a - c}  +  {x}^{b- c} }  \: }

FORMULA TO BE IMPLEMENTED

We are aware of the identity of indices that

 \displaystyle \sf{  \frac{ {a}^{m} }{ {a}^{n} } =  {a}^{m - n}  \: }

EVALUATION

 \displaystyle \sf{  \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  + \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{a - c}  +  {x}^{b- c} }  \: }

 =  \displaystyle \sf{   \frac{1}{1  +   \frac{ {x}^{b} }{ {x}^{a} } +\frac{ {x}^{c} }{ {x}^{a} }  } +   \frac{1}{1  +   \frac{ {x}^{a} }{ {x}^{b} } +\frac{ {x}^{c} }{ {x}^{b} }  } +  \frac{1}{1  +   \frac{ {x}^{a} }{ {x}^{c} } +\frac{ {x}^{b} }{ {x}^{c} }  }}

 =  \displaystyle \sf{   \frac{1}{ \frac{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }{ {x}^{a} } }  +   \frac{1}{ \frac{ {x}^{b} +  {x}^{a}  +  {x}^{c}  }{ {x}^{b} } }  +   \frac{1}{ \frac{ {x}^{c} +  {x}^{a}  +  {x}^{b}  }{ {x}^{c} } } }

 \displaystyle \sf{ =  \frac{ {x}^{a} }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  } + \frac{ {x}^{b} }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }   + \frac{ {x}^{c} }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  } }

 \displaystyle \sf{ =  \frac{ {x}^{a} +  {x}^{b}  +  {x}^{c} }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  } }

 =  \sf{1}

FINAL ANSWER

 \displaystyle \sf{  \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  + \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{a - c}  +  {x}^{b- c} }  \: } = 1

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 2^(x+3) + 2^(x – 4) =129,

then find the value of x.

https://brainly.in/question/23183505

Similar questions