Math, asked by sarveshpawar710, 1 month ago

Simplify ( 1 + i )^6

Answers

Answered by divyanshu9900
1

Enter a problem ...

Trigonometry Examples

Popular Problems Trigonometry Simplify (1 + i) ^ 6

(

1

+

i

)

6

Use the Binomial Theorem .

1

6

+

6

1

5

i

+

15

1

4

i

two

+

20

1

3

i

3

+

15

1

two

i

4

+

6

1

i

5

+

i

6

Simplify terms .

Tap for fewer steps ...

Simplify each term .

Tap for fewer steps ...

One to any power is one.

1

+

6

1

5

i

+

15

1

4

i

two

+

20

1

3

i

3

+

15

1

two

i

4

+

6

1

i

5

+

i

6

One to any power is one.

1

+

6

1

i

+

15

1

4

i

two

+

20

1

3

i

3

+

15

1

two

i

4

+

6

1

i

5

+

i

6

Multiply

6

by

1

.

1

+

6

i

+

15

1

4

i

two

+

20

1

3

i

3

+

15

1

two

i

4

+

6

1

i

5

+

i

6

One to any power is one.

1

+

6

i

+

15

1

i

two

+

20

1

3

i

3

+

15

1

two

i

4

+

6

1

i

5

+

i

6

Multiply

15

by

1

.

1

+

6

i

+

15

i

two

+

20

1

3

i

3

+

15

1

two

i

4

+

6

1

i

5

+

i

6

Rewrite

i

two

at

-

1

.

1

+

6

i

+

15

1

+

20

1

3

i

3

+

15

1

2

i

4

+

6

1

i

5

+

i

6

Multiply

15

by

1

.

1

+

6

i

15

+

20

1

3

i

3

+

15

1

2

i

4

+

6

1

i

5

+

i

6

One to any power is one.

1

+

6

i

15

+

20

1

i

3

+

15

1

2

i

4

+

6

1

i

5

+

i

6

Multiply

20

by

1

.

1

+

6

i

15

+

20

i

3

+

15

1

2

i

4

+

6

1

i

5

+

i

6

Factor out

i

2

.

1

+

6

i

15

+

20

(

i

2

i

)

+

15

1

2

i

4

+

6

1

i

5

+

i

6

Rewrite

i

2

at

1

.

1

+

6

i

15

+

20

(

1

i

)

+

15

1

2

i

4

+

6

1

i

5

+

i

6

Rewrite

1

i

at

i

.

1

+

6

i

15

+

20

(

i

)

+

15

1

2

i

4

+

6

1

i

5

+

i

6

Multiply

1

by

20

.

1

+

6

i

15

20

i

+

15

1

2

i

4

+

6

1

i

5

+

i

6

One to any power is one.

1

+

6

i

15

20

i

+

15

1

i

4

+

6

1

i

5

+

i

6

Multiply

15

by

1

.

1

+

6

i

15

20

i

+

15

i

4

+

6

1

i

5

+

i

6

Rewrite

i

4

at

1

.

Tap for fewer steps ...

Rewrite

i

4

at

(

i

2

)

two

.

1

+

6

i

15

20

i

+

15

(

i

2

)

2

+

6

1

i

5

+

i

6

Rewrite

i

two

at

1

.

1

+

6

i

15

-

20

i

+

15

(

-

1

)

two

+

6

1

i

5

+

i

6

Raise

-

1

to the power of

two

.

1

+

6

i

-

15

-

20

i

+

15

1

+

6

1

i

5

+

i

6

Multiply

15

by

1

.

1

+

6

i

-

15

-

20

i

+

15

+

6

1

i

5

+

i

6

Multiply

6

by

1

.

1

+

6

i

-

15

-

20

i

+

15

+

6

i

5

+

i

6

Factor out

i

4

.

1

+

6

i

-

15

-

20

i

+

15

+

6

(

i

4

i

)

+

i

6

Rewrite

i

4

at

1

.

Tap for fewer steps ...

Rewrite

i

4

at

(

i

two

)

two

.

1

+

6

i

-

15

-

20

i

+

15

+

6

(

(

i

two

)

two

i

)

+

i

6

Rewrite

i

two

at

-

1

.

1

+

6

i

-

15

-

20

i

+

15

+

6

(

(

-

1

)

two

i

)

+

i

6

Raise

-

1

to the power of

two

.

1

+

6

i

-

15

-

20

i

+

15

+

6

(

1

i

)

+

i

6

Multiply

i

by

1

.

1

+

6

i

15

20

i

+

15

+

6

i

+

i

6

Factor out

i

4

.

1

+

6

i

15

20

i

+

15

+

6

i

+

i

4

i

2

Rewrite

i

4

at

1

.

Tap for fewer steps ...

Rewrite

i

4

at

(

i

two

)

two

.

1

+

6

i

-

15

-

20

i

+

15

+

6

i

+

(

i

two

)

two

i

two

Rewrite

i

two

at

-

1

.

1

+

6

i

-

15

-

20

i

+

15

+

6

i

+

(

-

1

)

two

i

two

Raise

-

1

to the power of

two

.

1

+

6

i

-

15

-

20

i

+

15

+

6

i

+

1

i

two

Multiply

i

2

by

1

.

1

+

6

i

15

20

i

+

15

+

6

i

+

i

2

Rewrite

i

2

at

1

.

1

+

6

i

15

20

i

+

15

+

6

i

1

Simplify by adding terms .

Tap for fewer steps ...

Subtract

15

from

1

.

-

14

+

6

i

-

20

i

+

15

+

6

i

-

1

Simplify by adding and subtracting.

Tap for fewer steps ...

Add

-

14

and

15

.

1

+

6

i

-

20

i

+

6

i

-

1

Subtract

1

from

1

.

0

+

6

i

-

20

i

+

6

i

Add

0

and

6

i

.

6

i

-

20

i

+

6

i

Subtract

20

i

from

6

i

.

-

14

i

+

6

i

Add

-

14

i

and

6

i

.

-

8

i

Similar questions