Math, asked by Anushriya1811, 1 year ago

Simplify - 1/root3+root2 - 2/root5-root3 - 3/root2- root5 Answer = 2root2

Answers

Answered by rohitkumargupta
97
\mathit{ \frac{1}{ \sqrt{3} + \sqrt{2}  }  -  \frac{2}{ \sqrt{5} - \sqrt{3} }  -  \frac{3}{\sqrt{2} - \sqrt{5}} } \\  \\ \\  \mathit{\frac{1}{ \sqrt{3} + \sqrt{2}  } *  \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}  -  \frac{2}{ \sqrt{5} - \sqrt{3}} *  \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}   -  \frac{3}{\sqrt{2} - \sqrt{5}} *  \frac{\sqrt{2} + \sqrt{5}}{\sqrt{2} + \sqrt{5}}} \\ \\ \\  \mathit{\sqrt{3} - \sqrt{2} -  \frac{2*(\sqrt{5} + \sqrt{3})}{2}  - \frac{3*(\sqrt{2} + \sqrt{5})}{-3}}


\mathit{\sqrt{3} - \sqrt{2} - \sqrt{5} - \sqrt{3} + \sqrt{2} + \sqrt{5}}\\ \\ \\ \mathit{0}
Answered by aquialaska
53

Answer:

\frac{-1}{\sqrt{3}+\sqrt{2}}-\frac{2}{\sqrt{5}-\sqrt{3}}-\frac{3}{\sqrt{2}-\sqrt{5}}=2\sqrt{2}

Step-by-step explanation:

Given:

\frac{-1}{\sqrt{3}+\sqrt{2}}-\frac{2}{\sqrt{5}-\sqrt{3}}-\frac{3}{\sqrt{2}-\sqrt{5}}

We simplify by rationalizing the denominator,

\frac{-1}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{5}-\sqrt{3}}\times\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\frac{3}{\sqrt{2}-\sqrt{5}}\times\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}+\sqrt{5}}

\implies\frac{-1(\sqrt{3}-\sqrt{2})}{(\sqrt{3})^2-(\sqrt{2})^2}-\frac{2(\sqrt{5}+\sqrt{3})}{(\sqrt{5})^2-(\sqrt{3})^2}-\frac{3(\sqrt{2}+\sqrt{5})}{(\sqrt{2})^2-(\sqrt{5})^2}

\implies\frac{-\sqrt{3}+\sqrt{2}}{3-2}-\frac{2(\sqrt{5}+\sqrt{3})}{5-3}-\frac{3(\sqrt{2}+\sqrt{5})}{2-5}

\implies-\sqrt{3}+\sqrt{2}-\sqrt{5}+\sqrt{3}+\sqrt{2}+\sqrt{5}

\implies2\sqrt{2}

Hence, \frac{-1}{\sqrt{3}+\sqrt{2}}-\frac{2}{\sqrt{5}-\sqrt{3}}-\frac{3}{\sqrt{2}-\sqrt{5}}=2\sqrt{2}

Similar questions