Math, asked by aadhiArdru, 1 year ago

simplify 1 + tan square theta into 1 minus sin theta into 1 + sin theta​

Answers

Answered by Ritikagupta12
6

Your answer is in the picture.

Attachments:

aadhiArdru: Thank U
Answered by Anonymous
4

Given,

(1 +  {tan}^{2}  \theta)(1 -  \sin \theta)(1 + sin \:  \theta)

Step1:

Identity:

 \huge 1+  {tan}^{2}  \theta =  { \sec}^{2}  \theta

So, \:  We  \: have \: to \: substitute \:  {sec}^{2}  \theta \: in \: the \: place \: of \: 1 +  {tan}^{2}  \theta

Step 2 :

Identity :

 \huge(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

(1 -  \sin \theta)(1 + sin \:  \theta)

 {1}^{2}  -  { \sin}^{2}  \theta

1 -  { \sin }^{2}  \theta

Identity:

 \huge1 -  { \sin }^{2}  \theta =  { \ \cos }^{2}  \theta

So \: we \: have \: to \: substitute \:  { \cos }^{2}  \theta \: in \: the \: place \: of \: (1 -  \sin \theta)(1  +  \sin \theta)

Step 3:

(1 +  {tan}^{2}  \theta)(1 -  \sin \theta)(1 + sin \:  \theta)

 { \sec }^{2}  \theta \times  { \cos }^{2}  \theta

1

 \huge \: Therefore \:  (1 +  {tan}^{2}  \theta)(1 -  \sin \theta)(1 + sin \:  \theta) = 1

Similar questions