Math, asked by akshatmuskey, 4 months ago

simplify : (1 + tan² A) /(1 + cot²A.)

Answers

Answered by varadad25
6

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{(\:1\:+\:\tan^2\:A\:)}{(\:1\:+\:\cot^2\:A\:)}\:=\:\tan^2\:A}}}

Step-by-step-explanation:

We have given a trigonometric expression.

We have to simplify it.

\displaystyle{\sf\:\dfrac{(\:1\:+\:\tan^2\:A\:)}{(\:1\:+\:\cot^2\:A\:)}}

\displaystyle{\implies\sf\:\dfrac{\sec^2\:A}{cosec^2\:A}\:\:\:-\:-\:\left[\:\because\:1\:+\:\tan^2\:A\:=\:\sec^2\:A\:\&\:1\:+\:\cot^2\:A\:=\:cosec^2\:A\:\right]}

\displaystyle{\implies\sf\:\dfrac{\dfrac{1}{\cos^2\:A}}{\dfrac{1}{\sin^2\:A}}\:\:\:-\:-\:\left[\:\sec\:A\:=\:\dfrac{1}{\cos\:A}\:\&\:cosec\:A\:=\:\dfrac{1}{\sin\:A}\:\right]}

\displaystyle{\implies\sf\:\dfrac{1}{\cos^2\:A}\:\times\:\dfrac{\sin^2\:A}{1}}

\displaystyle{\implies\sf\:\dfrac{\sin^2\:A}{\cos^2\:A}}

\displaystyle{\implies\sf\:\left(\:\dfrac{\sin\:A}{\cos\:A}\:\right)^2\:\:\:-\:-\:\left[\because\:\dfrac{a^m}{b^m}\:=\:\left(\:\dfrac{a}{b}\:\right)^m\:\right]}

\displaystyle{\implies\sf\:\tan^2\:A\:\:\:-\:-\:\left[\:\because\:\dfrac{\sin\:A}{\cos\:A}\:=\:\tan\:A\:\right]}

\displaystyle{\therefore\boxed{\red{\sf\:\dfrac{(\:1\:+\:\tan^2\:A\:)}{(\:1\:+\:\cot^2\:A\:)}\:=\:\tan^2\:A}}}

─────────────────────

Additional Information:

\displaystyle{\boxed{\begin{minipage}{4.5cm}\underline{\bf\:Trigonometric\:Identities}\\\\\sf\:1.\:\tan\:\theta\:=\:\dfrac{\sin\:\theta}{\cos\:\theta}\\\\\sf\:2.\:\sec\:\theta\:=\:\dfrac{1}{\cos\:\theta}\\\\\sf\:3.\:cosec\:\theta\:=\:\dfrac{1}{\sin\:\theta}\\\\\sf\:4.\:\sin^2\:\theta\:+\:\cos^2\:\theta\:=\:1\\\\\sf\:5.\:1\:+\:\tan^2\:\theta\:=\:\sec^2\:\theta\\\\\sf\:6.\:1\:+\:\cot^2\:\theta\:=\:cosec^2\:\theta\\\\\end{minipage}}

Answered by Anonymous
4

\bf{\dfrac{1+\tan ^2\left(A\right)}{1+\cot ^2\left(A\right)}}

\sf{\mathrm{Use\:the\:following\:identity}:\quad \sec ^2\left(x\right)-\tan ^2\left(x\right)=1}

\sf{\mathrm{Therefore\:}1+\tan ^2\left(x\right)=\sec ^2\left(x\right)}

\bf{=\dfrac{\sec ^2\left(A\right)}{1+\cot ^2\left(A\right)}}

\sf{\mathrm{Use\:the\:following\:identity}:\quad \:-\cot ^2\left(x\right)+\csc ^2\left(x\right)=1}

\sf{\mathrm{Therefore\:}1+\cot ^2\left(x\right)=\csc ^2\left(x\right)}

\bf{=\dfrac{\sec ^2\left(A\right)}{\csc ^2\left(A\right)}}

\bf{\displaystyle=\frac{\left(\frac{1}{\cos \left(A\right)}\right)^2}{\left(\frac{1}{\sin \left(A\right)}\right)^2}}

\bf{=\dfrac{\sin ^2\left(A\right)}{\cos ^2\left(A\right)}}

\sf{\text { Use the basic trigonometric identity: } \tan (x)=\dfrac{\sin (x)}{\cos (x)}}

\tt{\dfrac{\left(1+\tan ^{2} A\right)}{\left(1+\cot ^{2} A\right)}=\tan ^{2} A}

Similar questions