Math, asked by GeniusMayank, 7 hours ago

Simplify:-
1.
(3a + b)^{3}  +  {(3a - b)}^{3}
2.
 {(3x  + 2)}^{3}  +  {(3x - 2)}^{3}
Best answer will be marked brainliest!!​

Answers

Answered by vasuu199
0

Step-by-step explanation:

3(4a−3b)(b−3a)(2b−a)

(4a−3b)

3

−(3a−b)

3

−(a−2b)

3

=(4a−3b)

3

+(b−3a)

3

+(2b−a)

3

Let,

x=4a−3b;y=b−3a;z=2b−a

On adding, x+y+z=0

∴x

3

+y

3

+z

3

=3xyz

Subtituting x, y, z values, we get

(4a−3b)

3

+(b−3a)

3

+(2b−a)

3

=3(4a−3b)(b−3a)(2b−a)

Answered by hukam0685
2

Step-by-step explanation:

Given:

1)(3a + b)^{3} + {(3a - b)}^{3}

2) {(3x + 2)}^{3} + {(3x - 2)}^{3}

To find: Simplify

Solution:

Tip:

Identity used:

 {(x + y)}^{3}  =  {x}^{3}  + 3xy(x + y) +  {y}^{3}  \\  \\ {(x  -  y)}^{3}  =  {x}^{3}    +   3xy(x  -  y)  -   {y}^{3}  \\ \\

1) Apply these formulas

x=3a

y=b

 {(3a + b)}^{3} + {(3a - b)}^{3}=  {(3a)}^{3}  + 3(3a)b(3a+b) +  {b}^{3} +  {(3a)}^{3}  + 3(3a)b(3a-b) -{b}^{3} \\  \\ =  27{a}^{3} +27a^2b+9ab^2+b^3   +  27{a}^{3} +27a^2b-9ab^2-b^3 \\ \\ =54a^3+54a^2b\\\\\bold{\red{{(3a + b)}^{3} + {(3a - b)}^{3}=54a^2(a+b)}}\\

2)  {(3x + 2)}^{3} + {(3x - 2)}^{3}=  {(3x)}^{3}  + 3(3x)2(3x+2) +  {(2)}^{3} +  {(3x)}^{3}  + 3(3x)2(3x-2) -{(2)}^{3} \\  \\ =  27{x}^{3} +54x^2+36x+8   + 27{x}^{3} +54x^2-36x-8 \\ \\=54x^3+108x^2\\\\\bold{\red{{(3x + 2)}^{3} + {(3x - 2)}^{3}=54x^2(x+2)}}\\

Final answer:

{(3a + b)}^{3} + {(3a - b)}^{3}=54a^2(a+b)\\ \\ {(3x + 2)}^{3} + {(3x - 2)}^{3}=54x^2(x+2)\\

Hope it helps you.

Similar questions