Math, asked by vaibhav28nov, 11 months ago

Simplify: (1/x)^1/3 × x^7/2

Answers

Answered by Anonymous
4

Answer:

\large\boxed{ \sf{{x}^{ \frac{19}{6} } }}

Step-by-step explanation:

  \large{ \sf{{( \frac{1}{x} )}^{ \frac{1}{3} }  \times  {x}^{ \frac{7}{2}  } }} \\  \\   \large{ \sf{=  {x}^{ -  \frac{1}{3} }  \times  {x}^{ \frac{7}{2} }  }}\\  \\  \large{ \sf{ =  {x}^{ -  \frac{1}{3}  +  \frac{7}{2} } }} \\  \\   \large{ \sf{=  {x}^{ \frac{21 - 2}{6} }  }}\\  \\   \large{ \sf{=  {x}^{ \frac{19}{6} } }}

Concept Map :-

  •   \sf{{x}^{ - n}  =  \dfrac{1}{ {x}^{n} }}

  •   \sf{{x}^{m}  \times  {x}^{n}  =  {x}^{m + n} }
Answered by karanrajawat70p6177j
3

Answer:

X^19/6

Step-by-step explanation:

(1/x)^1/3=(x)^-1/3

So now according to question

(1/x)^1/3 × x^7/2

x^-1/3 × x^7/2

x^(-1/3+ 7/2). {X^m × X^n=X^(m+n)}

x^19/6 ans.

Similar questions