Simplify √10 * √15 and find its approximate value taking √2 = 1.41 .
Attachments:
![](https://hi-static.z-dn.net/files/d39/c6330187c90a293a095c745901075746.jpg)
Answers
Answered by
9
Step-by-step explanation:
The approximate value of the given expression while taking \sqrt{2}=1.412=1.41 is 7
Therefore \sqrt{10}\times \sqrt{5}=710×5=7
Step-by-step explanation:
Given expression is \sqrt{10}\times \sqrt{5}10×5
Also given that the approximate value of \sqrt{2}=1.412=1.41
To simplify the given expression :
\sqrt{10}\times \sqrt{5}=\sqrt{10\times 5}10×5=10×5 ( by using the property \sqrt{a\times b}=\sqrt{a}\times \sqrt{b}a×b=a×b here a=10 and b=5 )
=\sqrt{50}=50
=\sqrt{25\times 2}=25×2
=\sqrt{25}\times \sqrt{2}=25×2 ( by using the property \sqrt{a\times b}=\sqrt{a}\times \sqrt{b}a×b=a×b here a=25 and b=2 )
=5\times \sqrt{2}=5×2
=5\times (1.41)=5×(1.41)
=7.05=7.05
=7=7
Therefore \sqrt{10}\times \sqrt{5}=710×5=7
Hope it helps..!!
Similar questions