Math, asked by goldy209, 4 months ago

Simplify √10 * √15 and find its approximate value taking √2 = 1.41 .

Attachments:

Answers

Answered by Anonymous
9

Step-by-step explanation:

The approximate value of the given expression while taking \sqrt{2}=1.412=1.41 is 7

Therefore \sqrt{10}\times \sqrt{5}=710×5=7

Step-by-step explanation:

Given expression is \sqrt{10}\times \sqrt{5}10×5

Also given that the approximate value of  \sqrt{2}=1.412=1.41

To simplify the given expression :

\sqrt{10}\times \sqrt{5}=\sqrt{10\times 5}10×5=10×5 ( by using the property \sqrt{a\times b}=\sqrt{a}\times \sqrt{b}a×b=a×b here a=10 and b=5 )

=\sqrt{50}=50

=\sqrt{25\times 2}=25×2

=\sqrt{25}\times \sqrt{2}=25×2 ( by using the property \sqrt{a\times b}=\sqrt{a}\times \sqrt{b}a×b=a×b here a=25 and b=2 )

=5\times \sqrt{2}=5×2

=5\times (1.41)=5×(1.41)

=7.05=7.05

=7=7

Therefore  \sqrt{10}\times \sqrt{5}=710×5=7

Hope it helps..!!

Similar questions