Math, asked by angelsingh182000, 2 months ago

Simplify:12^3×15^4/81×25^2​

Answers

Answered by IntrovertLeo
105

Given:

An expression -

\bf \implies \dfrac{12^3 \times 15^4}{81 \times 25^2}

What To Find:

We have to -

  • Simplify the given expression.

Solution:

\sf \implies \dfrac{12^3 \times 15^4}{81 \times 25^2}

The numerator can be written as,

\sf \implies \dfrac{(3 \times 4)^3 \times (3 \times 5)^4}{81 \times 25^2}

Again the numerator can be written as,

\sf \implies \dfrac{(3 \times 2^2)^3 \times (3 \times 5)^4}{81 \times 25^2}

Remove the brackets,

\sf \implies \dfrac{3^3 \times 2^6 \times 3^4 \times 5^4}{81 \times 25^2}

The denominator can be written as,

\sf \implies \dfrac{3^3 \times 2^6 \times 3^4 \times 5^4}{9^2 \times (5^2)^2}

Again the denominator can be written as,

\sf \implies \dfrac{3^3 \times 2^6 \times 3^4 \times 5^4}{(3^2)^2 \times (5^2)^2}

Remove the brackets,

\sf \implies \dfrac{3^3 \times 2^6 \times 3^4 \times 5^4}{3^4 \times 5^4}

Rearrange the values in the numerator,

\sf \implies \dfrac{2^6 \times 3^3 \times  3^4 \times 5^4}{3^4 \times 5^4}

Use the law in the numerator:  \sf a^m \times a^n = a^{m+n}

\sf \implies \dfrac{2^6 \times 3^{3+4} \times 5^4}{3^4 \times 5^4}

Solve,

\sf \implies \dfrac{2^6 \times 3^{7} \times 5^4}{3^4 \times 5^4}

Use the law:  \sf a^m \div a^n = a^{m-n}

\sf \implies 2^6 \times 3^{7-4} \times 5^{4-4}

Solve the exponents,

\sf \implies 2^6 \times 3^{3} \times 5^{0}

Write 5⁰ as 1,

\sf \implies 2^6 \times 3^{3} \times 1

Can be written as,

\sf \implies 2^6 \times 3^{3}

Find the powers,

\sf \implies 64 \times 27

Multiply,

\sf \implies 1728

Final Answer:

∴ Thus, the answer is 1728 after simplifying the expression.

Answered by debjit08
3

Answer:

Answer is given in the picture

Attachments:
Similar questions