Math, asked by shreyamishra8374, 8 months ago

simplify
(12a+17b)^2 - (12a-17b)^2​

Answers

Answered by Anonymous
32

\red\bigstarAnswer:

\sf \: {( \: 12a \:  +  \: 17b)}^{2} \:  -  \:  {( \: 12a \:  -  \: 17b)}^{2}  \:  =  \: 816ab

\pink\bigstarGiven:

  •  \sf \: {( \: 12a \:  +  \: 17b)}^{2} \:  -  \:  {( \: 12a \:  -  \: 17b)}^{2}

\blue\bigstarTo find:

  • To Simplify the given expression

\green\bigstar Solution:

 \sf \: {( \: 12a \:  +  \: 17b)}^{2} \:  -  \:  {( \: 12a \:  -  \: 17b)}^{2}

[ By using (a + b)² = a² + 2ab + b² and (a - b)² = a² - 2ab + b² ]

\sf  \implies   {(12a)}^{2}  \:  +  \: 2(12a)(17b) \:  +  \:  {(17b)}^{2}  \:  -  \: [ \:  {(12a)}^{2}  \:  -  \: 2(12a)(17b) \:  +  \:  {(17b)}^{2}]

\sf  \implies   {(12a)}^{2}  \:  +  \: 2(12a)(17b) \:  +  \:  {(17b)}^{2}  \:  -  \:  {(12a)}^{2}  \:   +   \: 2(12a)(17b) \:   -   \:  {(17b)}^{2}

\sf  \implies   2(12a)(17b)   \:   \:   +   \: 2(12a)(17b)

\sf  \implies   4(12a)(17b)

\sf  \implies   \boxed{ 816ab}

  \boxed{ \sf \therefore\sf \: {( \: 12a \:  +  \: 17b)}^{2} \:  -  \:  {( \: 12a \:  -  \: 17b)}^{2}  =  \:  \:  816 ab}

\red\bigstar Concepts Used:

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • Negative × Negative = Positive
  • Cancellation of numbers with opposite signs

\blue\bigstar Extra - Information:

  • a² – b² = (a + b)(a – b)

  • (x + a)(x + b) = x² + (a + b) x + ab

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a + b)3 = a³ + b³ + 3ab (a + b)

  • (a – b)³ = a³ – b³ – 3ab (a – b)

  • a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)

  • If (a + b + c) = 0, then a³ + b³ + c³ = 3abc

  • (a + b)² - (a - b)² = 4ab
Answered by dasmirasree6
5

Step-by-step explanation:

Here are some of my factorization rules that can help u a lot ....

Attachments:
Similar questions