Math, asked by Pratibha04, 1 year ago

simplify 16^-1/4*4th root of 16

Answers

Answered by jitumahi435
13

We need to recall the following rules for the exponent.

  • a^{-m}=\frac{1}{a^m}
  • \sqrt[m]{a} =a^{\frac{1}{m} }

This problem is about the exponent.

Given:

16^{\frac{-1}{4} }*\sqrt[4]{16}

=\frac{1}{16^{\frac{1}{4} } } * 16^{\frac{1}{4}

=1

Thus, 16^{\frac{-1}{4} }*\sqrt[4]{16}=1

Answered by mintu78945
6

The expression E =

16 { \frac{ - 1}{4} }^{}  ×  \sqrt[4]{16}

16 { \frac{ - 1}{4} }^{}  \times  \sqrt[4]{16}

16 { \frac{ - 1}{4} }^{}  \times 16 { \frac{1}{4} }^{}

16 { \frac{ - 1}{4} }^{}  +  { \frac{1}{4} }^{}

16 {}^{0}

 = 0

16 { \frac{ - 1}{4} }^{}  ×  \sqrt[4]{16}  = 1

#SP J2

Similar questions