Math, asked by choudharynilam0987, 1 month ago

simplify (16/49)power 1/2
please the answer is 4/7 but I need the solution
please be quick​

Answers

Answered by sahucreation09
7

Step-by-step explanation:

hope it's helpful to you

Attachments:
Answered by BrainlySparrow
187

Step-by-step explanation:

\Large{\bf{\pink{\mathfrak{\dag{\underline{\underline{Question :}}}}}}}  \:

Simplify (16/49)^1/2

\Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{Solution:}}}}}}}  \:

As we know that,

\sf{ \: a \frac{1}{n}  =  \sqrt[n]{a} }

 \displaystyle{ \implies \:  (\frac{16}{49}) {}^{ \frac{1}{2} }  }

 \displaystyle{ \implies \:  \sqrt{ \frac{16}{49} } }

  • If we factorise them

 \displaystyle{ \implies \:  \sqrt{ \frac{4 \times 4}{7 \times 7} } } \:

 \displaystyle{ \implies \:  \frac{4}{7} } \:

∴ The answer is 4/7.

\Large{\bf{\green{\mathfrak{\dag{\underline{\underline{More  \: to  \: Know :}}}}}}}  \:

\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}

Similar questions