Math, asked by sanjurai77790, 6 months ago

simplify (2+√3)×(2-√3)​

Answers

Answered by ankitvaishy16
0
4-2underoot3+2underroot3-3 =4-3= 1 answer
Answered by vanshikavikal448
32

 \huge \bold \color{green}{ \underline{ \underline \red{required \: answer : }}}

(2 +   \sqrt{3} ) \times (2 -  \sqrt{3} )

now..solve by using property

 {a}^{2}  -  {b}^{2}  = (a  + b)(a - b)

 \implies \: (2 +  \sqrt{3} )( 2 -  \sqrt{3} ) =  {2}^{2}  -   { (\sqrt{3}) }^{2}  \\  \\  \implies \: (2 +  \sqrt{3} )(2 -  \sqrt{3} ) = 4 - 3 \\   \\ \implies \: (2 +  \sqrt{3} )(2 -  \sqrt{3} ) = 1

so the answer is 1

 \bold{ \underline{ \underline{for \: more \: information : }}}

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \\  {(a - b)}^{2}  =  {a}^{2}  +   {b}^{2}  - 2ab \\  \\(x + a)(x + b) =  {x}^{2}   + (a + b)x + ab\\  \\   {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca \\  \\  {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}   +  3ab(a + b) \\  \\  {(a - b)}^{3}  =  {a}^{3}  -  {b}^{3}  - 3ab(a - b) \\  \\  {a}^{3}   + {b}^{3}  = (a + b)(  {a}^{2}  +  {b}^{2}  - ab) \\  \\  {a}^{3}  -  {b}^{3}  = (a  + b) ( {a}^{2}  +  {b}^{2}  + ab)

Similar questions