Science, asked by sanjanabm2007, 6 months ago

Simplify 2/3 pq (- ( 9)/10 p^2 q^2)​

Answers

Answered by syedjalaloneplus8
0

Answer:

STEP

1

:

           1

Simplify   —

           3

Equation at the end of step

1

:

                                             1                1             1

 ((((((((2•(p2))•(q2))-(3p•(q2)))+3pq)-10)-((—•(p2))•(q2)))+((—•p)•(q2)))-((—•p)•q))+5

                                             2                3             3

STEP  

2

:

           1

Simplify   —

           3

Equation at the end of step

2

:

                                             1                1         pq

 ((((((((2•(p2))•(q2))-(3p•(q2)))+3pq)-10)-((—•(p2))•(q2)))+((—•p)•q2))-——)+5

                                             2                3         3  

STEP

3

:

Equation at the end of step 3

                                             1              pq2  pq

 ((((((((2•(p2))•(q2))-(3p•(q2)))+3pq)-10)-((—•(p2))•(q2)))+———)-——)+5

                                             2               3   3  

STEP  

4

:

           1

Simplify   —

           2

Equation at the end of step

4

:

                                             1          pq2  pq

 ((((((((2•(p2))•(q2))-(3p•(q2)))+3pq)-10)-((—•p2)•q2))+———)-——)+5

                                             2           3   3  

STEP

5

:

Equation at the end of step 5

                                            p2      pq2  pq

 ((((((((2•(p2))•(q2))-(3p•(q2)))+3pq)-10)-(——•q2))+———)-——)+5

                                            2        3   3  

STEP

6

:

Equation at the end of step 6

                                           p2q2  pq2  pq

 ((((((((2•(p2))•(q2))-(3p•(q2)))+3pq)-10)-————)+———)-——)+5

                                            2     3   3  

STEP  

7

:

Equation at the end of step

7

:

                                      p2q2  pq2  pq

 ((((((((2•(p2))•(q2))-3pq2)+3pq)-10)-————)+———)-——)+5

                                       2     3   3  

STEP  

8

:

Equation at the end of step

8

:

                               p2q2  pq2  pq

 (((((((2p2•q2)-3pq2)+3pq)-10)-————)+———)-——)+5

                                2     3   3  

STEP

9

:

Rewriting the whole as an Equivalent Fraction

9.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  2  as the denominator :

                               2p2q2 - 3pq2 + 3pq - 10      (2p2q2 - 3pq2 + 3pq - 10) • 2  

    2p2q2 - 3pq2 + 3pq - 10 =  ———————————————————————  =  —————————————————————————————

                                          1                              2              

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

9.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

(2p2q2-3pq2+3pq-10) • 2 - (p2q2)      3p2q2 - 6pq2 + 6pq - 20  

————————————————————————————————  =  ———————————————————————

               2                                2            

Equation at the end of step

9

:

   (3p2q2 - 6pq2 + 6pq - 20)     pq2     pq      

 ((————————————————————————— +  ———) -  ——) +  5

               2                 3      3      

STEP

10

:

Calculating the Least Common Multiple :

10.1    Find the Least Common Multiple

     The left denominator is :       2  

     The right denominator is :       3  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 0 1

3 0 1 1

Product of all  

Prime Factors  2 3 6

     Least Common Multiple:

     6  

Calculating Multipliers :

10.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

10.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      (3p2q2-6pq2+6pq-20) • 3  

  ——————————————————  =   ———————————————————————

        L.C.M                        6            

  R. Mult. • R. Num.      pq2 • 2

  ——————————————————  =   ———————

        L.C.M                6    

Adding fractions that have a common denominator :

10.4       Adding up the two equivalent fractions

(3p2q2-6pq2+6pq-20) • 3 + pq2 • 2      9p2q2 - 16pq2 + 18pq - 60  

—————————————————————————————————  =  —————————————————————————

                6                                 6            

Equation at the end of step

10

:

  (9p2q2 - 16pq2 + 18pq - 60)     pq      

 (——————————————————————————— -  ——) +  5

               6                 3      

STEP

11

:

Calculating the Least Common Multiple :

11.1    Find the Least Common Multiple

     The left denominator is :       6  

     The right denominator is :       3  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 0 1

3 1 1 1

Product of all  

Prime Factors  6 3 6

     Least Common Multiple:

     6  

Calculating Multipliers :

11.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

11.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (9p2q2-16pq2+18pq-60)  

  ——————————————————  =   —————————————————————

        L.C.M                       6          

  R. Mult. • R. Num.      pq • 2

  ——————————————————  =   ——————

        L.C.M               6    

Adding fractions that have a common denominator :

11.4       Adding up the two equivalent fractions

(9p2q2-16pq2+18pq-60) - (pq • 2)      9p2q2 - 16pq2 + 16pq - 60  

————————————————————————————————  =  —————————————————————————

               6                                 6            

Equation at the end of step

11

:

 (9p2q2 - 16pq2 + 16pq - 60)      

 ——————————————————————————— +  5

              6                  

STEP

12

:

Rewriting the whole as an Equivalent Fraction :

12.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  6  as the de      

Explanation:

Answered by janvijanvi8727
0

Answer:

HOPE IT WILLL HELP U...

PLSSS MARK AS BRAINLIEST...

Explanation:

Attachments:
Similar questions