Math, asked by himansu05, 1 year ago

simplify 2√3 upon 3 minus √3 upon 6


kanchi55: the answer is 6 (_/3 + 1)

Answers

Answered by Anonymous
2
We have,

2√3
_____
3 - √3
_____
6

=> 2√3 x 6
________
3 - √ 3

=> 12 √ 3 3 + √ 3
______ x _________
3 - √ 3 3 + √ 3

=> 36√3 + 36
___________
9 - 3

=> 36 ( √3 + 1 )
___________
6

=> 6 √3 + 6
Answered by Inflameroftheancient
6
Hey there!

The following numbers are given and is told to divide it two times (not necessarily). Here we're asked to simplify the whole values and bring out a final answer.

Now, by applying the fraction rule that is,

\bf{\frac{a}{\frac{b}{c}}} \\

\bf{= \frac{a \times c}{b}} \\

Now,

\bf{= \frac{2 \times 6 \sqrt{3}}{3 - \sqrt{3}}} \\

By applying and multiplying the following numbers 2 × 6 = 12.

\bf{= \frac{12 \sqrt{3}}{3 - \sqrt{3}}} \\

Factoring out \bf{3 - \sqrt{3}}, 3 = \bf{\sqrt{3} \times \sqrt{3}}.

\bf{= \frac{12 \sqrt{3}}{\sqrt{3} \sqrt{3} - \sqrt{3}}} \\

Factor out the common term \bf{\sqrt{3}}.

\bf{= \frac{12 \sqrt{3} }{\sqrt{3}(\sqrt{3} - 1)}} \\

Cancel out the common term of factor \bf{\sqrt{3}}.

\bf{= \frac{12}{\sqrt{3} - 1}} \\

Rationalising the whole value;

Multiplying by a conjugated term that is,

\bf{\frac{\sqrt{3} + 1}{\sqrt{3} + 1}} \\

Therefore,

\bf{= \frac{12(\sqrt{3} + 1)}{(\sqrt{3} - 1) \times (\sqrt{3} + 1)}} \\

Apply the rule of Difference of two squares formula that is,

\bf{(a - b) \times (a + b) = {a}^{2} - {b}^{2}} \\

\bf{Here, \: \: \: a = \sqrt{3}, \: \: \: b = 1}

Therefore,

\bf{= \frac{12(\sqrt{3} + 1) }{{(\sqrt{3})}^{2} - {1}^{2}}} \\

Apply this rule \bf{1^a = 1}.

Here, \bf{1^2 = 1}.

Now,

\bf{= \frac{12(\sqrt{3} + 1)}{{(\sqrt{3})}^{2} - 1}} \\

Applying the rule of square roots to half squares that is,

\bf{\sqrt{a} = {a}^{\frac{1}{2}}} \\

Therefore,

\bf{= \frac{12(\sqrt{3} + 1)}{{({3}^{\frac{1}{2}})}^{2} - 1}} \\

Apply the rule of exponential forms that is,

\bf{({{a}^{b}})^{c} = {a}^{b \times c}} \\

Here,

\bf{= \frac{12(\sqrt{3} + 1)}{{3}^{\frac{1}{2} \times 2} - 1}} \\

Multiply the fractions that is,

\bf{a \times \frac{b}{c} = \frac{a \times b}{c}} \\

Here,

\bf{= \frac{12(\sqrt{3} + 1)}{3 - 1}} \\

Subtract the numbers,

\bf{= \frac{12(\sqrt{3} + 1)}{2}} \\

Now, divide the numbers to obtain the final value,

\boxed{\huge{\bf{\underline{= 6(1 + \sqrt{3})}}}} \\

Which is the final solution for this type of query.

Hope this helps and clears your doubts in a detailed way !

WritersParadise01: nice explanation ☺️
Similar questions