Math, asked by arnav2123, 1 year ago

Simplify
2√30/√6-3√140/√28+√55/√99

Answers

Answered by DaIncredible
19
Hey friend,
Here is the answer you were looking for:
 \frac{2 \sqrt{30} }{ \sqrt{6} }  -  \frac{3 \sqrt{140} }{ \sqrt{28} }  +  \frac{ \sqrt{55} }{ \sqrt{99} }  \\  \\  (by \: splitting \: we \: get) \\  \\  =  \frac{2 \sqrt{30} }{ \sqrt{6} }  -  \frac{3 \sqrt{2 \times 2 \times 7 \times 5} }{ \sqrt{2 \times 2 \times 7} }  +  \frac{ \sqrt{55} }{ \sqrt{3 \times 3 \times 11} }  \\  \\  =  \frac{2 \sqrt{30} }{ \sqrt{6} }  -  \frac{3 \times 2 \sqrt{35} }{2 \sqrt{7} }  +  \frac{ \sqrt{55} }{3 \sqrt{11} }  \\  \\  on \: rationalizing \: we \: get \\  \\  \frac{2 \sqrt{30} }{ \sqrt{6} }  \times  \frac{ \sqrt{6} }{ \sqrt{6} }  -  \frac{6 \sqrt{35} }{2 \sqrt{7} }  \times  \frac{2 \sqrt{7} }{2 \sqrt{7} }  +  \frac{ \sqrt{55} }{3 \sqrt{11} }  \times  \frac{3 \sqrt{11} }{3 \sqrt{11} }  \\  \\  =  \frac{2 \sqrt{30}  \times  \sqrt{6} }{ \sqrt{6}  \times  \sqrt{6} }   -  \frac{6 \times 2 \sqrt{35}  \times  \sqrt{7} }{2 \sqrt{7}  \times 2 \sqrt{7} }  +  \frac{ \sqrt{55} \times 3 \sqrt{11}  }{3 \sqrt{11} \times 3 \sqrt{11}  }  \\  \\ (splitting \: again) \\  \\   =  \frac{2 \sqrt{6 \times 6 \times 5} }{6}  -  \frac{12 \sqrt{7 \times 7 \times 5} }{28}  +  \frac{3 \sqrt{11 \times 11 \times 5}  }{99}  \\  \\  =  \frac{2 \times 6 \sqrt{5} }{6}  -  \frac{12 \times 7 \sqrt{5} }{28}  +  \frac{3 \times 11 \sqrt{5} }{99}  \\  \\  (cancelling) \\  \\  = 2 \sqrt{5}  - 3 \sqrt{5}  +  \frac{ \sqrt{5} }{3}  \\  \\ (or \: we \: can \: write) \\  \\  =  \frac{2 \sqrt{5} \times 3 - 3 \sqrt{5}   \times 3 +  \sqrt{5}  \times 1}{3}  \\  \\  =  \frac{6 \sqrt{5} - 9 \sqrt{5}   +  \sqrt{5} }{3}


Hope this helps!!!

@Mahak24

Thanks...
☺☺

arnav2123: But the answer is -2/3√5
Similar questions