Math, asked by anishsingh90068, 4 months ago

Simplify :

2/√5 − √3​

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given To Rationalise:

  • 2/(√5 - √3)

Solution:

Given,

 \sf  = \dfrac{2}{ \sqrt{5} - \sqrt{3} }

Rationalizing,...

 \sf  = \dfrac{2}{ \sqrt{5} - \sqrt{3} } \times  \dfrac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }

 \sf  = \dfrac{2( \sqrt{5} +  \sqrt{3})}{( \sqrt{5} - \sqrt{3})( \sqrt{5} +  \sqrt{3})}

Using identity a² - b² = (a + b)(a - b), we get,

 \sf  = \dfrac{2( \sqrt{5} +  \sqrt{3})}{(\sqrt{5})^{2}  - (\sqrt{3})^{2}}

 \sf  = \dfrac{2( \sqrt{5} +  \sqrt{3})}{5 - 3}

 \sf  = \dfrac{2( \sqrt{5} +  \sqrt{3})}{2}

Cancelling out 2, we get,

 \sf  =\sqrt{5} +  \sqrt{3}

Now,

→ √5 = 2.24 and,

→ √3 = 1.73

So,

 \sf \sqrt{5} +  \sqrt{3}

 \sf =2.24 + 1.73

 \sf = 3.97

Answer:

  • Result after simplification = 3.97.
Answered by Anonymous
1

Answer:

 \frac{2}{\sqrt{5} }    -  \sqrt{3}  =  \frac{2 -  \sqrt{15} }{\sqrt{5} }  \times  \frac{ \sqrt{5} }{\sqrt{5} }  =  \frac{2 \sqrt{5  }  - 5 \sqrt{3} }{5} .

Step-by-step explanation:

Hope it helps.

Similar questions