Math, asked by ziyaburhanuddin, 2 months ago

Simplify: 2^-5 X 3^-5 x 125÷
5^-4 X 6^-5​

Answers

Answered by harshitha202034
1

Answer:

 ({2}^{ - 5}  \times  {3}^{ - 5}  \times 125) \div ( {5}^{ - 4} \times  {6}^{ - 5} ) \\  =  \frac{ {2}^{ - 5}  \times  {3}^{ - 5} \times 125 }{ {5}^{ - 4} \times  {6}^{ - 5}  }  \\  =  \frac{ {5}^{4} \times  {6}^{5} \times 125  }{ {2}^{5} \times  {3}^{5}  }  \\  =  \frac{ {5}^{4} \times  {(2 \times 3)}^{5} \times  {5}^{3}   }{ {2}^{5} \times  {3}^{5}  }  \\  =  \frac{ {5}^{4} \times  {2}^{5}  \times  {3}^{5} \times  {5}^{3}    }{ {2}^{5} \times  {3}^{5}  }  \\  =  \frac{ {(5)}^{4 + 3} \times  {2}^{5}  \times  {3}^{5}  }{ {2}^{5}  \times  {3}^{5}}  \\  =   \frac{ {5}^{7}  \times  {2}^{5}  \times  {3}^{5}}{ {2}^{5}  \times  {3}^{5}}  \\  =  {5}^{7}  \times  {(2)}^{5 - 5}  \times  {(3)}^{5 - 5}  \\  =  {5}^{7}  \times  {2}^{0}  \times  {3}^{0}  \\  =  {5}^{7}  \times 1  \times 1 \\  \large{ \boxed{ = \color{crimson} {5}^{7} }} \\  \\   \underline{ \underline{ \large Note}} :  \\ ◈ \:  \:  \color{crimson}  {(a \times b)}^{m} =  {a}^{m}  \times  {b}^{m}  \\ ◈ \:  \:  \color{crimson} {a}^{m}  \times  {a}^{n}  =  {(a)}^{m + n}  \\ ◈ \:  \:  \color{crimson} \frac{ {a}^{m} }{ {a}^{n} }  =  {(a)}^{m - n}  \\ ◈ \:  \:  \color{crimson} {a}^{0}  = 1

Similar questions